. intervening medium (material or fluid) an

" (e.g., the heat leakage through the evacua

CHAPTER FOUR

RADIATION

_Heat transfer by radiation usually takes place simultaneously with heat transfer b
nvecuon and conduction. The heat transfer by radiation is of much more importance at hlgi

temperature levels as compared to the other two mechanisms. Direct-fired kettles, electric
sters, steam boilers, rotary Kiln, etc. are examples of chemical process equipments where
dranon is a major energy transfer mechamsm

" Radiation : It refers to the transport of energy through space by electromagnetic waves.

Radiation is the mode of transport. of energy in the form of electromagnet1c waves through
space, at the speed of light (3 x 108 m/s).

It depends upon the electromagnetic waves as a means for the transfer of energy from a
source to a receiver.

Radiant energy is of the same nature as the ordmary visible. llght It travels in straight hnes
and it may be reflected from a surface. The electromagnetic waves with wavelength ranging from
0.5 to 50 pm (microns) are of importance to radrant heat transfer. [1 pm = 10-8 m] Radiation of a

single wavelength is called monochromatlc

- Thermal radiation is the energy emitted by a body entirely_due to its temperature and we

4 restrict our discussion to this type of radiation.

Typlcal examples of heat transfer by 1 radiation :

(i)  Transfer of heat from the sun to the earth.

" (ii) Heat loss from an unlagged steam pipe.

(iii) Use of energy from the sun in solar heaters.

(iv) . Heating of a cold room by a radiant electric heater.

In contrast to conduction and convection, radiation heat transfer does not require an
d the heat can be transmitted by a radratron mode .

across an absolute vacuum.

Radiation is the only significant mode of energy/heat transfer when no medium is present
ted walls of a thermos flask)

(4.1)
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Heat Transfer ~ 4.2 Radiation

Absorptivity, Reflectivity and Transmissivity : :

Any substance receives and gives off/emits energy in the_form of electr(')m.agnetlc‘ Waves,
When energy emitted by a heated body falls on a second body (i.¢., t'hermal r.adlatlon falling on 5
body), it will be partly absorbed, partly reflected and partly transmitted. It is the only absorbeg
energy that appears as a heat in the body.

The proportions of the incident energy that are absorbed, reflected and transmitteq
depend mainly on the characteristics of a receiver and temperature of the receiver
(incident radiation = heat absorbed + heat transmitted + heat reflected).

The fraction of the incident radiation on a body that is absorbed by the body is known as the
absorptivity. It may be denoted by the letter 'a’. :

The fraction of the incident radiation on a body that is reflected by the body is known as the
reflectivity. It may be denoted by the letter 'r'. _

Reflected Incident

N

\ Absorbed

Transmitted
Fig. 4.1 : Reflection, absorption and transmission of radiation

The fraction of the incident radiation on a body that is transmitted through the body is known
as the transmissivity. It may be denoted by the letter 't'. The energy balance about a body

(a receiver) on which the total incident energy falling is unity (the sum of these fractions is unity)
is given as :

a+r+7t = 1.0 , ... (4.1)

A majority of engineering materials are opaque (i.e., for which the amount transmitted is
very negligible, T = 0) and in such cases, the Equation (4.1) simplifies to :

at+r = 1.0 (as © = 0) ... for an opaque material/surface ... (4.2)

If T=1, a=r=0, then all the incident energy passes through the body and it is called
perfectly transparent., e.g., rock salt (NaCl), quartz and fluorite.

Ifr=1, a=1 =0, then all the incident energy is reflected by the body and is called

specular. If a = 0, r + 7 = 1, then the body is called as a perfectly white body,
white chalk (white body).

(i) r = Orepresents a non-reflecting surface.
(i1) | represents a perfect reflector.
(1) 0 represents a non-absorbing surface,

r
a

(iv) a = 1 represents a perfectly absorbing surface or a black surface.
T
T

e.g., a piece of

v) 1 represents a perfectly transparent surface.
(vi) = (0 represents an opaque surface.
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. N nature, some materials ; '
nearest to a bl § may approach it. Lampblack
: ack body. It absorbs 96 % of the visible light. Both absorpti oy
vity of a perfectly black body are unity. ' P A

concept of a black body is an idealisation with which the radiation characteristics of real

ahoff's Law :

ThlS .law Sets up a relationship between the emissive power of a body/surface to its
rptivity.

Consider that the two bodies are kept into a furnace held at a constant temperature of T K.
\ssume that, of the two bodies one is a black body and the other is a non-black body, i.e., the
ody having 'a' value less than one. Both the bodies will ultimately attain the temperature of
and the bodies neither become hotter nor cooler than the furnace. At this condition of
rmal equilibrium, each body absorbs and emits thermal radiation at the same rate. The rate of
bsorption and emission for the black body will be different from that of the non-black body.

-~ Let A, and A, be the areas of the non-black body and black body respectively. Let T be the
at which radiation falling on bodies per unit area and E, and E;, be the emissive powers
j fv(emissive power is the total quantity of radiant energy emitted by a body per unit area per

. unit time) of non-black and black body respectively.
' At thermal equilibrium, absorption and emission rates are equal. Therefore,

Ia, A, = AE ...(43)
Ia;i="E, ' ...(44)
and Iap A, = AEp ' ... (4.35)
' lap = Ep ... (4.6)
From Equations (4.4) and (4.6), we get
El = Eb S 4.7
ailio ap

ties of non-black and black bodies respectively.

ody (non-black), then for the second non-black body, we have :
.. (4.8)

... (49)
ssive power of the second non-black body.

’ where a,, ap, are the absorptivi

" If we introduce a second b
1 A3 a = E2 A3

v Ta, = E,

‘where a,and E, are the absorptivity and emi

Combining Equations (4.4), (4.6) and (4.9), we get

E
e SR L .. (4.10)

4 a, & B
v(A's the absorptivity of the black body is 1.0)
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Statement of Kirchhoff's law :

It states that : ar thermal equilibrium, the ratio of the total emissive power to its absorptivity
is the same for all bodies. Equation (4.10) is the mathematical statement of Kirchhoff's law.

The emissivity ‘¢’ of any body is defined as the ratio of the total emissive power E of the
body to that of a black body Ej, at the same temperature. The emissivity depends on the
temperature of the body only. The emissivity of a body is a measure of how it emits radiant
energy in comparison with a black body at the same temperature.

E
e = Eb (4]])
Since 3 i1s constant for all bodies,
E _Ey ,
a = ah ee (41‘.)
E a
e = Eb = ap (413)
But ap = 1 (for black body)
- e =2 ... (4.14)

Thus, when any body is in thermal equilibrium with its surroundings, its emissivity and

absorptivity are equal. Equation (4.14) may be taken as the another statement of Kirchhoff's
law.

Monochromatic emissive power : It is the radiant energy emitted from a body per unit area
per unit time, per unit wavelength about the wavelength A. It is denoted by the symbol E;. It has
the units of W/(m?- um).

Total emissive power : It is the total quantity of radiant energy of all wavelength emitted by

2 body per unit area per unit time. It is denoted by the symbol E. The unit of E in the SI system is
Wim?.

The emissive power, Ey, of a black surface is defined as the energy emitted by the surface
per unit area per unit time.

For the entire spectrum of radiation from a surface, it is the sum of all the monochromatic
radiations from the surface.

E = fEde ... (4.15)
0

Monochromatic emissivity : It is the ratio of the monochromatic emissive power of a

surface 1o that of a black surface at the same wavelength.
By
e = Ep, 1 ... (4.10)

Grey Body :

A body having the same value of the monochromatic emissivity at all wavelengths is called 2
grey body.

A grey body is the one of which emissivity is independent of wavelength.

[The adjective monochromatic indicates that the quantity being defined for a particular
wavelength / single wavelength. Monochromatic property refers to a single wavelength and the

!otal property is the sum of the monochromatic values of property. Monochromatic values are not
important to the direct solution of engineering problems. |

Scanned with CamScanner




0 steafnn-Boltzmann Law :

It states i;h:lti:zﬂt;”ai:mmfiw power (total energy emitted per unit area per unit time) of a
bod) o] Ao P fpo '.'"‘_m"l fo the fourth power of its absolute temperature. This law
s the total amount of radiation emitted by a body (object) to its temperature.

relate
Bp e T* L (417
E, =06 T¢
where T = Temperature in K

Steafan-Boltzmann constant
o = 5.67 x 10 W/(m*K*)
If Ep is in W/m? T is in K, then the Steafan-Boltzman

i 567x 10 W/(m.K*) in the SI system.

)

n constant has the value of

For a non-black body,

E

; B ~ ¢ ... (4.18)

4 E=c¢-E ... (4.19)

¢ Combining Equations (4.17) and (4.19), we get

f E=e¢-o-T .. (420)

¢ where '¢'is the emissivity of the non-black body.

i The Steafan-Boltzmann equation is a fundamental relation for all the radiant energy transfer

T Planck's Law :

{5 This law gives a relationship between the monochromatic emissive power of a black body.

1§ absolute temperature and the corresponding wavelength.

i1 _ 2nhc?A -

:* Ep, 2 = ho/AT _ | ... (4.

i where Ep, 218 the monochromatic emissive power of the black body / black surface, W/(m?- pm),

i his Planck’s constant, k is the Boltzmann constant, c is the speed of light, T is the absolute

i temperature and A is the wavelength of radiation. The Planck's constant has the value of

g 6625 x 10J.s in SL

The above equation can be written as,

i Ep ) = -——‘—_—CI A — ... (4.22)

“ T (A1)

where C, and C, are constants.

g | C, = 3472 x 1076W-m’ and C;=001439mK

 (iii) Wiens Displacement LV : o ‘

¢ which the maximum monochromatic emissive power 1S

It states that the wavelength a

obtained (i.e., Amax) IS inversely proportional 10 the absolute temperature, O
T Amax =C (423)

T is in Kelvins, the value of constant C is equal to 2890
power is

Where A, is in micrometers and . 02
gth at which maximum emissive

.This law gives a relationship
. Attained and the absolute temperature.

between the wavelen
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Héat TI"ransfer 4.6 Radiation

Heat Transfer by Radiation :

4
A body having emissivity 'e' at temperature T, emits the radiant energy equal to e © T.l per
unit area. If the surroundings are black, none of this radiation will be reflected by them and if the

4 .
surroundings are at temperature T,, they will emit the radiation equal to © T, . If a body is grey,
it will absorb fraction ‘e’ of this energy, so that the net rate of radiant energy flow from the grey
body to the black surroundings is given by the expression

Q _eo(ti-T) ... (4.24)
where '¢'= Emissivity of grey body. _
T, = Absolute temperature of grey body
T, = Absolute temperature of surroundings.

The Equation (4.24) is also applicabie when a heat source is small as compared to the
surroundings (so that none of the heat radiated from the source is reflected to it), i.e. a body
radiating to the atmosphere (in the calculation of heat loss from a steam pipe).

Concept of a Black Body :

A black body is the one which absorbs all radiation incident upon it, of whatever wave-
length, A. It is an ideal body that absorbs all incident radiation energy and reflects or transmits
none. This means that the black body is perfectly non-reflecting and non-transmitting. Actually
no matter with a =1 and T =r = 0 exists. Even the blackest surfaces occurring in nature still have
reflectivity of about 1 per cent (r = 0.01). i

Hence, although a black body must be black in colour, this is not a sufficient condition.
Kirchhoff, however, conceived the following possibility of making a practically perfect black
body. If a hollow body is provided with only one very small opening and is held at a uniform
temperature, then any beam of radiation entering through the hole is partly absorbed, and partly
reflected inside. The reflected radiation will not find the outlet, but will fall again on the inside
of the wall. There it will be only partly reflected (other part of it is absorbed by the walls) and so
on. By such a sequence of reflections, the entering radiation will be almost absorbed by the body,
and an arrangement of this kind will act just as a perfectly black body as shown in Fig. 4.2.

All substances emit radiation, the quality and quantity depending upon the absolute
temperature and the properties of the material composing a radiating body. It may be shown that,
at a given temperature, good absorbers of any particular wavelength are also good emitter of that
wavelength. Therefore, since by definition, a black body is a complete radiator of al] wavelengths
it is also the best possible emitter of the thermal radiation, i.e., it is a full radiator.

Fig. 4.2 : Black body
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| qransfer Coefficient for Radiation (Radiatiye H Radiation

{ e black surroundings at temperature T, may

47

eat Transfer Coefficient) :
unit surface area ofa
be expressed as
Q = h, (TI_TZ)

Therefore, | hy =

The net heat transfer by radiation from 5
grey body at temperature T, to

-0 /.4 4
| e (T\-Ty = (T,-T,) (Ti-13) ... (4.25)
where l';ri‘s e radiative h_eat. transfer coefficient. Equation (4.21) is also applicable if the
surrouncings are not black, the body is small and none of its radiation js reflected back to it.

SOLVED EXAMPLES)]

Example 4.1 : Calculate the heat loss by radiation from an unlagged horizontal steam pipe,
50 mm o.d. at 377 K (104°C) to air at 283 K (10°C).

Data : Emissivity, e = 0.90. _
Solution : The heat loss by radiation per unit area is given by

=e-0-(TI-T3)

= 0.90
= 5.67 x 108 W/(m2K¢)
= 377K and T, =283K

where

O Ha o >0

_ 090x5.67x 104 (3774 —783*)

= 704 W/m? ... Ans.
Example 4.2 : Calculate the rate of heat transfer by radiation from an unlagged steam pipe,
50 mm o.d., at 393 K (120°C) to air at 293 K (20°C).
Assume emissivity ‘e’ of 0.9.

Solution : Given : e 0.90
T, = 393K, T,= 293K

G = 5.67x10°% W/(m?K*)
The rate of heat transfer by radiation per unit area is

9_1'_ = C°G(TT—T;)

copusiadon AR
-

A

— 0.90x5.67x10%393~293°
= 841.2 W/m? _Ans.
B o e o . 5
i ) e emiss .8,
f: :irt(;ur:lzl?rft.:ri':a?zfg:e':;’:;s;::iz:j;nergy per meter length of pipe ? The outside diameter of the
pipe is 60 mm,
Solution : Length of pipe =1 m
e=0.3, 6 = 5.67x108W/(m*K*)
T, =423 K, T, = 300K, D, =60 mm =0.06 m
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Heat Transfer L 48 I _____Radiation

Outside surface area per 1 meter length of the pipe is
A = xD,L=ntx006x1 =(.189 m?

The net radiation rate per 1 meter length of the pipe is
Q = ecA(TI-Ty) =08x567x 10-* x 0.189 (12'"3‘ ~300")

205 W/m .. Ans,
Example 4.4 : Estimate the total heat loss by convection and radiation from an unlagged
steam pipe, 50 mm o.d., at 415 K (142°C) to air at 290 K (17°C).
Data : Take emissivity, e =0.90
The film coefficient (he) to calculate heat loss by natura
he = 1.18 (AT/Do)*%, W/(m?K)
Solution : Outside area of pipe = tD- L
Consider 1 m length of the steam pipe.
L =1m
D, = 50mm= 005m... (given)
Outside area per unit length of the pipe = T X 0.05x 1.0 = 0.157 m*/m
AT=T,-T, = 415-290=125K
Let us calculate h,.
h. = 1.18 (AT/D,)*> = 1.18 (125/0.05)*» = 8.34 W/(m*-K)
The heat loss by convection per 1 m length of the pipe is
Q = he- A(T,-T)
= 8.34x0.157 (415 -290) = 163.7 W/m
The heat loss by radiation per 1 m length of the pipe is
Q = ecA(T-T2)

1 convection is given by

— 09x567x109x0.157 (415 *~290*) = 181 W/m
The total heat loss by convection and radiation per 1 m length of the pipe is
Q = Q+Q
= 163.7 + 181
= 344.7 W/m ... ADS-
Example 4.5 : Calculate the rate of heat loss from a 6 m long horizontal steam pipe. 60 ™"

;.:0. ;(vhen carrying steam ai 800 kN/m’. The temperature of the surrounding armosphere is

Data : Take emissivity, e = 0.85 and
0 =5.67 x 10* W/(m?-K*) - Steafan-Boltzman
. n constant
The film coefficient (hc) for heat loss by natural convection can bg calculated by
| he = 1.64 (AT)2, W/(m?K)
Steam is saturated at 800 kN/m? and 443 K (170°C).
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Solution * Neglecting the inside resistance and resistance of the metal wall, it may be

- med that the surface temperature of the pipe is 443 K.

P
GiVen:Tl: 443 K, T2=290K. D“ =60 mm=0.06 m
AT =443-290=153K, L =6m
For radiation from pipe :

Surface area of pipe = #D-L
= £x0.06x 6.0=1131m

The rate of heat loss by radiation from the pipe :
Q = ecA(T-T2)
0.85 X 5.67 x 108 1.131 (4’@‘-2‘6'0‘)

= 1714 W
The rate of heat loss by convection from the pipe :
Q = he A(T,-Ty)

= 1.64 (AT)**x A (T,-To)
1.64 (153)°%x 1.131 (443 - 290)

= 998 W
| Total heat loss = Qr+Qc = 1714 +998
= 2T12W .. Ans.
| Exchange of Energy between Two Parallel Plates / Planes of Different Emissivities :
; Multiple Reflection Method :

d a small distance apart, part of the energy emitted by

When two non-black bodies are situate
| be reflected back to it by the second
at undergoes a series
rfaces that are maintained
d exchanging radiation. Let €,

body and will then be partly reabsorbed and
of internal reflections and absorptions.

at absolute temperatures T, and
and e, be the emissivities

one body wil
partly reflected again. Thus the he

Consider two large gray planes/su
T, respectively, a small distance apart an

of the surfaces.

Surface-2

ger between infinite parallel surfaces

Fig. 4.3 : Radiant heat exchan,
1 absorbed by surface-2)

(energy originating at surface-

#
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4.10 Radiation,

Heat Transfer

unit area :
Consider the energy radiated/emitted from the surface-1. Then, for per per unit
time, we have

—  energy radiated from surface-1 = G- € T? - (@)
—  of this, energy absorbed by surface-2 = G ¢, T e -+ (b)
—  and energy reflected by surface-2 = ¢, T} (1 -€y) = ©
—  of this, energy re-absorbed by surface-1 = o ¢, Ty (1—¢,) € -+ (d)
— and energy re-reflected by surface-1 =G e, Ti (1-¢) (1 -¢) - (e)
© —  and of this, energy absorbed by surface-2=c e, T{ (1-¢,) (1-¢,) €, - (D)

Hence, as a result of each complete cycle of internal reflection, it is clear by comparing (b)
and (f) that the absorption is reduced by a factor (1 —¢,) (1 —e,). As the energy suffers an infinite
number of reflections, we can write

Total transfer of energy from surface-1 to surface-2 per unit area per unit time is
=0c-e6T) [1+(1-e)(l—e)+(1—e)?(l—e,)?... to o]
1
1-(1-e)(1-e)
G-66 4
T ete—ee, Ti
In a similar manner, considering the radiation emitted by the surface 2, it can be shown that

the total transfer of energy from surface 2 to surface 1 per unit area per unit time (i.e., energy
emitted by the surface 2 and absorbed by the surface 1)

€60 4
=T
€+e,—-¢ e
Thus, the net energy transferred per unit area per unit time is

9) _ €60 4 4
(A 12 - el+ez—elel (TI—TZ)

®, -5

- = 0"3132'11

) = _L+_L_1 o ... (4.26)
€ €
(%)n = 6-F, (Ti-T}) .. (4.27)
R S |
where, F, = 1L _ ... (4.28)
e e

1 2
(F , is called overall interchange factor and is function of e

and
Spheres or cylinders with spherical or cylindrical en )

2
. X i s clos H
radiative heat or radiant energy between inner and outer spheres is g‘ilm byThe net exchange of

- OA, ,
? 1 e (T-13) .. (429)
°l+(f3 (3_ 1)
_ OA, 4
=1 A 5 (T-1) ... (430)
el+A2 (62—- )
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! H,.u'/,@_nieL 4.11 Radiation
~ The net exchange of radiant energy between infinitely large concentric cylinders is given by
4
9 =2 A(TI-T) o A(TI-T})
1.4 (L 1) 1 on(l
e A \e ¢ I (ez— 1)
where A; and A, are the areas of the inner and outer cylinders/spheres respectively, e, and e, are

the emissivities of the inner and outer cylindrical/spherical surfaces. T, and T, are the respective
temperatures.

... (431)

Q = 6AFy (T{-T}) ... (432)

1
= 1 Al 1 cve (4.33)
€ + X2 (3_2_ 1)
Example 4.6 : Calculate the loss of heat by radiation from a steel tube of diameter 70 mm
and 3 m long at a temperature of 500 K (227°C), if the tube is located in a square brick conduit

0.3 m side at 300 K (27°C). Assume ‘e’ for steel as 0.79 and for brick conduit as 0.93.
Solution : The rate of heat loss by radiation is given by

where F,,

G- A (TT—T;)
1A (1 1)
€1 * A \ep
where, G = 5.67 x 103 W/(m*K*)
e,=eof steel = 0.79, e, =eof brick=0.93
T, = 500K
T, = 300K

70
A, = area of tube T X 7000 X 3 =0.659 m?

A, = area of square conduit = 4 (0.3x3) = 3.6 m?

5.67 x 108% 0.659 x [ 500 ‘ —300"]
Q = 1 0.659 ( 1 )
079 * 36 (0931
Q = 15885W ... Ans.

Example 4.7 : Calculate the net radiant heat exchange per squdre meter for very large
planes at temperatures of 703 K (430°C) and 513 K (260°C) respectively. Assume that the

emissivity of the hot and cold planes are 0.85 and 0.75 respectively.
Solution : The net radiant heat exchange per 1 m” area between two planes is given by

(Q) o (T} -T?)

A) 51 1
r e + e -1
" where G = 5.67 % 10 W/(m2-K*)
' T, = 703K |
T, = 513K

0.85 and e,= 075

0
i
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Radiation,

Heat Transfer 4.12
Q|  5.67x102[(703)*~ (513)]
@) =1 1
r . 08 t075

= 6571 Wi rallel oxidiﬁ
Example 4.8 : Determine the net radiant heat exchange between two P;l eratures of tr:n
plates, placed at a distance of 25 mm having sides 3 x 3 m. .Tfté.-’ surface ;’":ps gl 0
plates are 373 K (100°C) and 313 K (40°C) respectively. Emissivities of the plate quat.
Given: e;= e, = 0.736.
Solution : The interchange factor is given by

1
F12=1 1 )
el+°z—

1
=1 1 :
0.736 ¥ 0.736 ~

The radiant heat exchange between two parallel planes is given by
Q = 6AF;, (T:-T;)

where Fi, 0.5823
A =3x3=9m?
o = 5.67x 10 W/(m?K?

= 0.5823

T, = 373K
T, = 313K
Q = 5.67x10%x9x0.5823 x [(373)*- (313)4]
= 2900 W ... Ans.

The net radiant interchange between two parallel oxidised iron plates is 2900 W.

Example 4.9 : Calculate the rate of heat loss from a thermoflask if the polished silvered
surfaces have emissivities of 0.05. The liquid in the flask is at 368 K (95°C) and the casing is at
293 K (20°C). Calculate the loss if both the surfaces were black.

Steafan-Boltzmann constant () = 5.67 x 10~ W/(m?-K*)

Solution : The interchange factor is given by

1

F, = 1 A, (1 )
—+53 (-1
e A\
Given : A = A, and ¢, = ¢, =0.05
1
Flz = 1 1 = 0-0256
005 * (0—.63‘ l)
We have : T, = 368K
= 293K

3
|
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post Transfer 413

— v Radiation
The heat loss by thermal M&m:o: Per unit area of the silvered surface to the surroundings is
A = OF, Ail.ﬁmv
= 5.67 x 108x 0.0256 [(368)* - (293¢
= 15.92 W/m? Mdaest
“When the two surfaces are black : A
€1 = € =1. Therefore,
Fp = - 1

1 1 =
i+ (-1
The heat loss by radiation in this case is

m = 5.67x10%x 1 x [(368)*- (293)] =622 W/m? ... Ans.

mﬂ-—.:_.—o 4.10 : The inner sphere of a Diwar flask is 30 cm in diameter and outer sphere is
36 cm diameter. Both spheres are coated with a material for which emissivity is 0.05. Find the
rate at which liquid oxygen (latent heat = 2]1.44 kJ/kg) would evaporate at 90 K (- 183°C) when

the outer sphere temperature is 293 K (20°C). Assume that the other modes of heat transfer are
absent.

Solution : Let us calculate the interchange factor. Denote the inner sphere by 1 and the outer
by 2. The ratio of their areas is

A 2
A _ 4 GO eou

A, = &= 36y
Given : e, = e = 0.05
1 1
We have : F, = 1 A (1 =3 1 = 0.03
=+ [= Il.+o.%§ﬁ||.|_u
e A \e 0.05 0.05

The radiation heat transfer through the walls into the flask is given by
m =06-Fj A.Hﬂlq.wv

5.67x10%x0.03[293* -90*] = 12.42 W/m2
1242x A

12.42 x ® (0.3)2= 3.51 W=12.64 kJ/h

Latent heat of vaporisation liquid oxygen = 21.44 kJ/kg

. 12.64
Amount of oxygen evaporated =m = 5727 =0.59 kg/h ... Ans.

Q

Xam iqui i boiling point = 90 K (- 183°C) is
E le 4.11 : Liquid oxygen at atmospheric pressure ( P )
Stored in a—-uw\.aln& §Nn& of 300 mm outside diameter. The system is _E:mﬁm& by enclosing the
container inside another concentric sphere of 500 mm inside diameter E..S the space between
them evacuated. Both the sphere surfaces are made of aluminium for which emissivity may be

taken as 0.3. The temperature of the outer sphere is 313 K (40°C).

heat flow by radiation. . ) L .
h—hw:w. WMM N.M H«hﬁ:amh.om in heat flow if a polished aluminium with an emissivity of 0.5 is

used for the container walls ?
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Solution : Case-I : The rate of heat flow by radiation is given by

U'AI(T?—T;)

"1 f‘.l(.!. )
e, ¥ A, ez"]

where o

= 5.67 % 10-* W/(m2 K*)
e. = e:=0.3
T| = 90K
T, = 313K
A, = D} = nx(0.3)2=0.283 m?
A; = D =mx (0.57=0.785 m?
—~~4 4
5.67 x 104x 0.283 [90° - 313"
Q=""7 0.283[1 | 1] = —3664W
03 % 0.785 |03~

Rate of heat flow = 36.64 W ,
Case-1I : Let us calculate Q using the polished aluminium for the inner pipe.
Emissivity of
[polished aluminium] = € =005
missivity o
aluminiugl f] = &=05
The rate of heat flow by radiation is

_ GAI(TT—T;)
Q=T AT
cl+A2 ez-l

o - S67x10%x 0.283 [(90)¢— (313)]
1

il

0.283 ( 1 =-734W
0.05 *0.785 (030!
Rate of heat flow = -7.34 W
[Reduction in] _ 3664-7.34 :
the heat flow | = 36.64 X 100 =79.97 % ... Ans.

Example 4.12 : Liguid nitrogen boiling at 77 K (-
container of diameter 32 cm. The container is surrou

diameter 36 cm at a temperature of 303 K (30°C) an

196°C) is stored in a 15 litre spherical
nded by a concentric spherical shell of

d the space between the two spheres 15
er are silvered and have an emissivity of

Solution : The radiant heat exchange rate between the inner and outer shell or the radiation
heat transfer through the walls into the container is given by
Q = GA, (T‘:—T;)
TL1 AT
€ A2 (7 -1 :

- where, T, and T, are temperatures of the inner and outer surfaces, respectively.
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' Wﬁaggfj!,f : ' 4.15 ' Radiation
g G = 5.67x 104 W/(m2K¢) |
T, = 77K
T, = 303K \
D, = 32cm =032 m, D, =36cm = 036 m

A, = D] = (032 = 0.3217 m?

A, = 7D; =7 (0.36) = 0.407 m?
€ = ¢ =0.3

5.67 x 10X 0.3217 [77" - 303 ]
1 03217 ( 1
003 * 0407 (003!
Q = -263W = -95kl/h

Rate of radiant heat transfer = 2.63 W = 9.5kJ/h
Latent heat of vaporisation of liquid nitrogen = 201 kJ/kg

(e,
]

where m is the rate of vaporisation of liquid nitrogen.

_Q_95
Rate of evaporationrate =m = A =201 = 0.047 kg/h _ ... Ans.

Example 4.13 : A space between the two concentric spherical vessels is completely
evacuated. The inner sphere contains air at 76 K (- 197°C). The ambient temperature is
300 K (27°C). The surfaces of the spheres are htghly polished (e = 0.04). Find the rate of
evaporation of liquid air per hour.

Diameter of inner sphere = 250 mm

Diameter of outer sphere = 350 mm

Latent heat of vaporisation of air = 200 kJ/kg

Solution : The rate of radiation heat transfer the walls into the vessel is given by the
relation :

_ oA (Ti-Ty) oan(TT-T‘;)

TTLAM YT 1 pa
e A \e; e, T\ p? &2—1

where, o = 67 X 10‘8 W/(m2-K#)
Al = 1tDl, Az—ﬂDz
D, = 250mm=025m, D,=350mm=0.35m
T, = 76K
T, = 300K
2 -4 4
Q = 5.67);104xg§0.2;5) ['176 -300 ] - _245W
004 * (0.35 [0.04 - l]

Rate of radiant heat transfer or heat flow by radiation
= 245W=245]J/s = 8.82kl/h

| | - 8.82
Rate of evaporation of liquid air=m = % 200 = 0-0441 kg/h ... Ans,
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Heat Transfer 4.16 Radiation

Radiation Shields : : _
In order to reduce the heat transfer by radiation between two surfaces, a third surface jg

introduced in between them. This surface is known as a radiation shield. o o
A shield or wall of material interposed between a source of radiation and a radiation
sensitive body to protect the body. . . heat from th
Radiation shields increase the surface resistance without removing any heat Irom the overal]
system. Thin sheets of plastic that are coated, on both sides, with highly reflecting metallic films
act as very effective radiation shields. They are used for the insulation of cryogenic storage
tanks. |
Suppose two infinite and parallel planes (each of area A) at temperatures T, and Ty are
separated by a third plane that is opaque to direct radiation between the two and Wh{C}.llls
extremely thin (radiation shield) as shown in Fig. 4.4. The net heat exchange between two initial
parallel planes (i.e., without a radiation shield) is given by
CA fh A
Q = 1 1 (Tl - T3)
e—l + e -1
where e, and e; are the emissivities of the planes.
Ty T, Ty

Shield
~

1 2 3
Fig. 4.4 : Radiation with shield
Let e, be the emissivity of the radiation shield.

With shield, the net heat exchange from 1 to 3 is given by

Q = T (-1 = 75— (1)
ete, ! et e !
[Qi = Q12 = Q2 as the shield does deliver or remove heat from the system.]
If e, = e; then

T = 3 (1i-19)

A 1
Then, Q = 1 1 5 (T‘:—T;')
c,+e2—1
Ife| = e, =e, then
c-A 1
Q = X3 (TT—T‘;)

;—1
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for € =e=e ;
CA
Q = 2 (TT—T:)
e 1
1
Ql . 2 Q

It shows that due to insertion of one shield between two parallel planes/surfaces, the

radiation heat trapsfer rate between them reduces to half of the initial value (i.e., the radiation
heat transfer rate is halved). :

For the simple case when 'n' shields are employed, each having the same emissivities as the

initial planes, Q, = ﬁ Q

1
n+1

where Q is the net heat exchange if the initial planes were not separated by shields.
Example 4.14 : A double walled flask may be idealised to be -equivalent to two infinite
parallel plates. The emissivities of walls are 0.3 and 0.7 respectively. The space between them is

evacuated. A shield of polished aluminium of e = 0.05 is inserted between them. Find the
reduction in heat transfer due to insertion of the radiation shield.

Q with 'n' shields = Q without shield

Solution :
1 3 1 2 3
e, =0.3 e;=0.7
e, =0.3 e;=0.7
Shield-e=-0.05
Without-shield With-shield
Fig. E 4.14

In the absence of shield, the radiant heat transfer rate is given by

T - T}
Q = c?( ll 3) .. (1)
 ete

GA(T-T3) oA(TI-T) =z
=1 1 - 376 376
03%07 !

[assuming GA (T1 - T3) =ZI
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With shield, the radiant heat transfer rate is given by

Q = (T‘ T‘) = .‘ (T‘—-T‘) )
e. +e, € ez
fore Q = Q2= Q,.)
SA
11 (- = 25— (r-1)
0.3*005 ! 0.05*0.7 ~!
T -T; Ti-T,
2233 T 2042
T -T: = 1.093 (T}-T})
T +1.093T = 2093 T
T} + 1.093 T} .
2003 = T2
Substituting the value of T, E(luation (2) becomes
Q = (T‘ T‘)
e.+ez
_ LA_.,:TA (1% +1.093 +T4)
I A 2.093
¢ &
CA 1.093 4
=T.1 1[2-"93] [1i-73]
e e '
o A x1.093
=711 x (Ti-T5)
(0.3 X005~ l) (2.093)
. 6 A(TI-T;
= 0.02338¢c- A (TI-T3) = 42(_736 ) = 42_?,66
Z Z
Reduction in ] Q-Q 100__3.76"'42.766
heat transfer using shield] = — Q X ''="_7z  x100
3.76
=91.2% ... Ans.

Example 4.15 : Find the heat transfer rate per unit area due to radiation between W0
infinitely long parallel planes. The first plane has an emissivity of 0.4 and is maintained a!
473 K (200°C). The emissivity of the second plane is 0.2 and is maintained at 300 K (30°C). If @
radiation shield having e = 0.5 is interposed between the given planes, find the percentagt
reduction in heat transfer rate and the steady-state temperature attained by the shield.
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7 golution } The radiant heat transfer without the shield is

Q o(r-m)
ATl L

c,*e. |
where. o = S.67x10*W/(m'K*Y)

¢, = 04, ¢ =02
T, = 413K
Tg = ‘O‘K
Q  5.67x104473"-303%)
A~ ALy

04%02 "~

= 363.1 Wm? oo AR

When the shield is introduced, the rate of heat transfer is

Q o(T-T3) oA (13-T3)
A1 1 - L 1|
c."'e,"l ez"'e,'

where e, = 0.5 and Tis the temperature of the shield in K.
The temperature of the shield can be obtained by equating the h

plate and the shield.

cat exchange between each

-1, _T-T)
T 1 . -1 1
1 — =

¢|+¢z_ e, €

473 - T, T5-303 °
T 1 1
04*05"!

5
meor - 2w
Solving, we get T, = 431.66K
Temperature of the shield = 431.66 K (158.66°C)
o (T} -T
% with shield = —l-(—'l'—})
e te !
_ 567x10° (473" -431.66" ]
.
04*05"!
[% Reduction in] 363.1 ~ 248.44
* Lheat loss = 363.1 x 100

3158 ‘ | iang

= 248.44 W/m?
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Heat Transfer B are maintained at 600 K (3270C) and

and ) .
Example 416 : Two o pl‘:;?:itgs are 0.8 and 0.5, respecnvely. Two thin radiatio,

300 K (27°C) and th.eir smfacf:i;zzo y 4 are i wtroduced between the .given planes. T,
shields C and D having emissi ' ng all the planes 1o be infinitely long, find ¢,

} i A CDa .
gu;en cf}la}::zst aer;c;:;:;'ge;” it aren and steady-state temperatures attained by the plape,
rate

C and D.
Solution : Since the shield does not deliver or remove heat from the system, the hey

exchange between C-D is equal to that between D-B.

In steady state, thus we can write

Qo = Qos
4
1 1 = 1
—+—-1 —4+—-1
eC eD eD eB |
€c = O'Sa eD=0-4, eB--'O.S
o1, _To-Ts
1 1 L Ly
05t 047 041057
Tg = 300K
|
T = 5 (Te-T5)
. _
Tp = a[T?:—soo“ r
A ' c o 8
9A=0.8 .
g~ V.
&c=05 |e;=04
TA=600K
| Te = 300 K
Similarly, Quc = Qu Fig.E 4.16
o (Th- 4
(Th-T0) _ o(Te-1h)
_1-+l 1 |
e € ecteg—l
Ts = 600K
ea = 0.8,

fe =05, ‘er=04 -
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08%05" 05%*04"
@ 4 _ T" T‘~ _ T‘
225 T 35§
— 4
1.56[600 ] =T o1 . (2)

substituting the value of Ty, in terms of T, from Equation (1) in Equation (2), we get

1.56[6'0"0‘42? = T - -;- [Té-a'()'o‘]

Solving, we get Te = 560.94 K (287.94°C) ... Ans.
1 —
We have : CTp = ) [T2—300“]
| —— —
= 5 [560.94' - 300']
T, = 461.73K (188.73°C)
The rate of heat exchange per unit area is
Q _ o (TA-Tc) 567x10% (600" - 560.94°]
A= 1, - L.l
en e 08%05 !
= 77094 W/m? ... Ans.

Example 4.17 : A 200 mm outside diameter pipe carrying steam runs in a large room and is
exposed to air at a temperature of 303 K (30°C). The temperature of the pipe surface is
673 K (400°C). Calculate the loss of heat to the surroundings per meter length of the pipe due to
thermal radiation. The emissivity of the pipe material is 0.8.

What would be the loss of heat due to radiation if the pipe is enclos

brick conduit of emissitivity 0.91?
Solution : Case-1: Pipeto surroundings

ed in a 400 mm diameter

Q = °'A|°(T: —T;)
where e = 08, 6 = 5.67x 108 W/(m>K*)

T, = 674K, T, = 303K

D, = 200mm = 0.2m
Consider 1 m length of the pipe-.

L=1m

A, =1aDL = nx02x10 = 0628 m/m
The loss of heat per 1 m length of the pipe is

Q, = 0.8x0.628x5.67X 104[677‘-3'6'3‘]

.. Ans,

= 56x10° W/m

e TR S, cade !
y e )
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Heat Transfer 4.22 Radiation

Case - II : Concentric cylinders
4 4
oA (Ti-Ty) oA (T -T2)
Q2 =.l. _é_l_ _]:_ 1)__1_+2|_(l_1)
€ t A \e” e, D; \&
where o = 5.67x 103 W/(m*K*)
e, = 08 ¢ =091

Dl = 0.2 m, D2 = 0.40m
‘A, = 0.628 m¥m length

5.67 x 104 0.628 (6—7—3 ‘_303 ‘)

Q=""71 020 o)
0.8 ¥0.40 \0.91~ |
= 5.39x10° W/m | ... Ans.
Reduction in heat loss = 5.6 X 103 — 5.39x 10° _
= 210 W/m ... Ans.

Example 4.18 : Two concentric tubes A and B with diameters 30 cm and 25 cm respectively
are maintained at temperatures of 813 K (540°C) and 473 K (200°C). The emissivity of tube A is
0.87 and that of B is 0.26. Determine the net heat transfer by radiation between the surfaces of

tubes expressed in watts for each square meter of B.
Solution : For concentric cylinders, we have

o (Ti-T2)
@A =1 b, Eo)
e, Dy\ep
where | 6 = 567x10% W/(m2K?)
T, = 813K, T,= 473K

€ = 0'87’ € = 0.26
D, = 25cm =0.25m
30cm =0.30m

A
]

A = 5..67.x104(§3“_473‘)
QA =77 0.25.[1
0.87 *0.30 0.26‘1]

6228 W/m?  Ans.

Radiation Shape Factor (F') : | |
The concept of radiation shape factor is useful in the analysis of radiant heat transfer
between two surfaces. It is also called as view factor, geometric configuration factor or simply
configuration factor. The shape factor ‘depends upon the shape and size of surfaces, the
corientation of the surfaces w.r.t. one another and the distance between them. The shape factor is
 defined as the fraction of the radiant energy that is emitted from one surface and intercepted by

the other surface directly without intervening reflections. It is represented by the symbol Fyy
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' Radiation
which means the shape fac;tor from a surface Ap, to another surf; ' fracti
of energy leaving the surface 'm' which reaches B o s frcion

' the Slll'f 1
Consider two black surfaces A and A, at unifo: .

petween which there is a net interchange/exchange of
The energy leaving surface-
2and 1is EbzAzp;n :

The net energy _exchange between A, and Az is

1 and arriving at surface-2, is Ey, A, F'lz and that between

Qa = Q = By, AF, - By, AF,

... (4.34)
If both the surfaces are at the same temperature, then Q,,=0 and Ep, = Ey,
i [ ] : .
Al FlZ = A2F2l cen (4.35)

The above equation is called as the reciprocity theorem.
In general, for exchange of heat between any two surfaces, we can write
AmF_ = AF,_
The net hgat exchange is 5
Q =Qu = AiF,, (B, ~En,) = AsF,, (Ep, ~Ep,)
= AF, o(Ti-T}) = A,F,, o(T-T})

Mathematically, F'lz is given as

F'lz = Q/Q ... (4.36)

where Q, is the energy emitted by surface-1 and Q, is the energy intercepted directly by the
surface-2 out of Q,.

Q, Q,
< >
[ w/
Fig. 4.5

If surface A, can see only surface A, then the shape factor F,, is unity.

Consider a case of enclosure in which one surface is exchanging radiant energy with all other
surfaces in the enclosure including itself, if the surface is concave. This is due to the fact that it
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Heat Transfer o . L IO -
urface cannot se€ any other part of j;

can view another part of it. On contrary, a SEEIYewE S5 ﬂ‘.“ ° nity since all the heat radiateq
The shape factor of a convex surface with its enclosure IS always unity ¢

\Y i vice versa.
from a convex surface is intercepted by its enclosure and not viC
Yy radiated/emitted from one surface is always

y the surface itself if the surface is concave-,

If n surfaces form an enclosure then the energ
intercepted by the other (n - 1) surfaces as well as b

, D : ... (4,
F, +F, +F, + .. +F =10 (4.37)
: : . - ... (4,
F, + F,, + F, + ... +F, = 1.0 (4.38)

' ... (4.39)

F,+F,+F,+.. +F, = 1.0

F;, . F__ . F;m are the shape factors with respect to surface itself.

Shape factor with respect to itself is the fraction of incident energy emitted by the surface

that gets intercepted by itself. '
When the surface is concave, it has a shape factor with respect to itself. But for plane or
convex surface, the shape factor with respect to itself is zero.

Fan = O for a convex or a flat surface

and an # 0 for a concave surface

Example 4.19 : Two parallel black plates 0.5 by 1.0 m are spaced 0.5 m apart, plate 1 is
maintained at 1273 K (1000°C) and plate 2 is maintained at 773 K (500°C). What is the net

radiant heat exchange between the plates ?
Take F,, =0.285
Solution : The net radiant heat exchange between the plates is
Q = AF, (Buy-By) = oA F, (19-19)
where o = 5.67x10® W/(m2.K%
A =05x1=05m? |

F. = 0.285

=
i

1273K and T, = 773K

5.67 x 104 0.5 x 0.285 ( 1273 % - 773 “)
= 18333 W : | As.

(@
I
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et ical Network Analogy for Thermal Radiation Systems :

Host T 4.25
Radiation

 The electrical network analogy j
. 8Y 18 an alternate approach for analysing thermal radiation

electrical problem. The terms useq ;

Q = uiva.lent tential difference between surfaces
Equivalent thermal resistance of the system .- (4.40)
For black surfaces, the radiation transfer can be estimated from the relation
4 4
' o\T,-T
Q = AoF, (T{-T}) = o(Ti-T) .. (441)

1/(A-F,,
= Equivalent potential difference =6 (T} - T;)

Equivalent thermal resistance = 1/ (Al' F'n

1/A,.F;,
vYWWA

—

T T,

4 4
o o(T, —-T,) o

Fig. 4.6 : Equivalent electrical circuit for black surfaces

Radiosity-Irradiation Approach :
Radiosity (J) : It is the total radiation leaving a surface (i.e., the total amount of energy
leaving a surface) per unit time per unit area. It is the sum of the energy-emitted and energy

reflected by the surface.
Irradiation (G) : It is the total amount of radiation incident upon a surface per unit time

per unit area.
Let us consider an elementary grey surface A, at T, having an emissivity of e,.

Let E;, be the emissive power of the surface.

Let G be the total radiation incident upon the surface.
Let J be the radiosity which is the sum of the energy emitted and energy reflected when no

energy is transmitted.
Then, the net energy leaving a surface is the difference between the radiosity and the

irradiation of the surface.
... (442)

QA =J-G
... (4.43)

J = eEp+1G
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As the transmissivity, T =0, we have
a+r+1 =1 but t=0

] = eBp+(1-¢)G .. (4.44)
J-eE, = (1-¢)G
G = J-eEp/(1-¢) ...(4,45)
J-¢Ep @
%g""(l—e) (4.46)
J(1-e)-J+eEp
= (1-¢)
Q (By-J)
A~ (1-¢
e A (Ep-J) Ep-J ... (4.47)

Q ="(1-¢ T~ (1-e)eA

Comparison of the above equation with Ohm's law (I = AV/R), i.e:., by considering the net
flow rate of heat as the current and (Ep — T) as the potential difference gives

Equivalent resistance = (1 —e)/eA ... (4.48)

As this resistance depends upon the property of a surface (emissivity), it is known as a
surface resistance. '

By | J
Q — O YM‘ ad
1-e
eh

Fig. 4.7 : Surface resistance in radiation network method

Now, consider the exchange of radiant energy between two surfaces A, and A,. In this case,
there is a restriction on the free flow of energy between two surfaces owing to their orientation
(shape) and this restriction may be referred as a shape resistance. The shape resistance can be
obtained as follows.

Of the total radiant energy that leaves surface-1, the energy that reaches surface-2 is A, F.u d

and of the total radiant energy leaving surface-2, an energy that reaches surface-1 is A, F;. L

The net interchange or exchange of energy from surfé,ce-l to surface-2 is

Ql2 - Al F|2 Jl "A2 F;I Jz e (449)
But A, F;z = AzF;,
Qi = A F'u J,-Jy) = M.?l ... (4.50)
l/Al Fl2
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1 Comparing with Ohm's law, we get Radiation

Shape resistance = 1/A, F
12

J ,
o— 2
. | 1A,.F, o
. 4.8 : Ele : .
Fig ment representing shape resistance in radiation network method

ence, two surfa i
H ces which exchange heat may each be considered as having a surface

resistance of (1 - e)feA and a shape resistance of 1/A, F

between their radiosity potential
a 2 y potential.
To construct a network for the radiation heat transfer between the surfaces, we only need to

connect a surface resistance [1 — 1/eA] to each surface and a sh

the radiosity Ppotentials. For example, in case of
other, the radiation network is as shown in Fig. 49

ape resistance 1/A F_ = between
two surfaces which exchange heat with each

For this case, the net heat transfer/exchange is the ratio of the overall potential difference to
the sum of resistances, as given by

Ep, - E
Quet = s ... (4.51)
. (1-e))e, A+ /A F,, + (1 -ey)le; A,
o(Ti-T
= (T : 2) ... (4.52)
(1-e)e A+ /A F, + (1 -e)le, A,
E J - J E
o AW W W
1 - 61 1 1 - ez
8,A, AFi2 eA
Fig. 4.9 : Radiation network for two surfaces which see each other and nothing else
E : J J E
VYV \ s ; WWW o
1-e, 1-e,
e,A, eAr

Fig. 4.10: Radhﬂon network for three surfaces which see each other and nothing else
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1 3 2
Fig. 4.11 : Radiation between parallel infinite planes with a radiation shield
Ep Js Ja Eba J3 Sz Erz
O —AMA——ANAN———AMA———AMAN———MN——AN—
1-e, 1 1- 6, 1-6, 1 1-¢,
1 Fs €3 €, Fa e,

Fig. 4.12 : Radiation network for two parallel planes/surfaces
separated by one radiation shield
(i) Consider radiation between two infinite surfaces-1 and -2 maintained at temperatures

1 2
' o (T -T))
Q=Q 1—e ] I8 (4.53)
Ae +A1 F'12 * ezAz T ey T,
As the surfaces are infinite, A, = A, = A
and F, = 1.0 | :
. ' Fig. 4.13
. Equation (4.53) becomes
__o(Ti-Ty)
- 1- € _1_ 1- €,
Ae, TAt ¢,A .
Ao (Ti-T))
Q = - € 1- €,
€ +1 €,
Ac(Ti-T)  Ao(ti-19)
= 1 =71 1 ... (4.54)
—l+1+cz-1 . a C_z 1
Q = AdF, (TT-T;) ... (4.55)
F|, - Overall interchange factor = i 1
e to -1
1 €
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! (ii) 4 4
C(T] —Tz)
Al € +AIF'|2+ Azez

(The network diagram is the same as given in
Fig. 4.14.]

We have, F, +F, = 10

For convex surface, F, =0

F, =10

12

| (Ti-T2)
Q=T7T"¢ 1 l-&

A e +K1-+ Aze;

AG(Ti-T2)
1—31 _A_l(].—ez)
e +1+Az —_ez

1 A, (1 )
- - — (-1
e 1+1+Az e

Ao(Ti-T2)
LA
CI+A2 e

Q = AIGFI2(TT—T;)

|

where F,, is the overall interchange factor.

1

Fi =_1.-é_|(_1_ )
e|+A2 Cz—

For two concentric infinitely long cylinders at T and T, by electrical analogy, we have

2

... (4.56)

... (457)
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Please note : Fy,is the interchange factor and F,, Is the shape factor. -
shield of emissivity €3 between twoO parallel infinite planes of

by electrical analogy, we have
o (T{-T2)

(Q/A)s = Q/A with shield = T R 1 1-e 1-6 3.

(iii) For one radiation
emissivities e, and €;

T+ e T e &
€ F,, € # F,,
- - 1-e,)
(-¢) 1  (1-¢) (1-e3) +__1_+( 2
ZR = + o+ e !
© F, s : Fy ”
1
But ‘!.‘ = 1, - =1
Fy Fy
The above equation reduces to
. 4 4
G(Tl—-Tz)
QA) = T i
l—1+1+;-—1+.e 1+1+e2"1
o(Ti-T;
=1 1 2 > ... (4.58)
°|+°2+33—

where e is the emissivity of the shield.

This equation can be generalized for two parallel plates separated by n shields of emissivities
€,» €s;» Csp S

_ o (T/-T))
(Q/A)s = 11 0 | ... (4.59)
el+e2+2i§15:i -(+1)
Forn=1, (QA) = 7 G(IT‘: -sz)
II1 ... (4.60)
1 € esl
esl =6
Forn=2, (QA) =7 CI, (ﬁz— ng (4.61)

Rt
el ez esl * 832 3

€s, land €, are the emissivities of radiation shields
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Ll Nadistion

v ) mr q.ylind\'l\‘nl radiation shields used tn eylindelent thermal systems [Fig, 4,15 (a)) the
raciation network diagram ix an alvc\u bolow |

Fig. 4.15 (a) : Cylindrical radiation shield

where ¢, and &, are the emissivities of concentric cylindrical surfaces, and e, and ¢, are the

surface emissivities (inner and outer) of the cylindrical radiation shield.
Q

= J Jy Eps J J Epz
- . - ' 1-
1- 8, 1 1-8 1-6 1 e,
8,A, AR W 0.A AsF3, eA;

Fig. 415 (b) : Radiation network for cylindrical radlation shield

o(T-T
Qs = Q withshield = —L}-:'—ﬁ——’) ... (4.62)

TR = (1-efe, A)+ LA F, +(1-efe;Ag)
+(1—edesAg) + 1/A; Fyy +(1—eye; Ag)

o (T\-T2)
(Q)S = l1-¢ 1 l—e; 1—04 1 l—ez (463)
€A +A|F'.3+ e Ay T ey A, +A3F;2 te,A,
—‘.— = —1.— =1
Fy Fy,

o (T\-T3)
(Q)S = 1 -e | 1-e, 1—34 _l_ l—ez

Ae, A T GA; T eA A, A,
oA (T\-T)

Qs = A, A, A, A,
(1/e)-1+1 +X;(lle,— l)+r3 (1/e,- 1)+K; E (1/e,-1)

Ao (T: T2)

TR ) A (LI
et A e A e Te,

.. (4.64)
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Heat Transfer 4.32 . Radiation,

With A= iDL or 2mnrL, we get
2nr,L o (Tf - Tg)
Q) = 1 X .. (4.65)
1 (1l L(e 1
_+_(— 1)+ ( +e4—1)

e n\e I3 \€3

[You can write (Q); or Q with shield, or case-II with shield and then use Q.]

Example 4.20 : Consider two large parallel plates, one at T, = 750 K (477°C) of emissiviry
e; = 0.75 and other at 500 K (227°C) of emissivity e; = 0.50. An aluminium radiation shielq
having an emissivity (on both sides) of e, = 0.05 is placed between the plates.

(i) Sketch a radiation network for the system with or without the radiation shield.

(ii) Calculate the percent reduction in heat transfer rate due to incorporation of the

radiation shield,
Solution :
Shiqld
QA
—>Y e, e, 500K Y ey eaH ey e, U T, =750K
1 2 1 2 3
Eb1 J1 J2 Eb2
— MWMWW—o— AN ——AMAN—0
@ Fi2 e, A=A, =A,

Fig. E 4.20 (A) : Radiation network without shield

: M:M_ﬂw_ff_w_ﬁm
e 1 -8 1-e 1 1-6
e1 F; 3 . 63 63 . F' .
32 e,

Fig. E 4.20 (B) : Radiation network for two parallel
plates separated by one radiation shield
The heat transfer without shield is given by

4 4
o(T,-T
e e
 where . c =

3.67 X 108 W/(m2-K+4)

Scanned with CamScanner




WM_“. e .o
T, = 150K, T,= S00K, e = 075ande, = 0.50

5.67 x 10 (350 550"
R T ) = 6170 W/n’

075 *05 !

Heat transfer with shield is given by

The radiation network shield is shown in Fig. E 420 (B)

RS I RO

Various resistances are calculated as follows per unit area.
@ (-e)e, = (1-0.75/0.75 =0.333

(if) E, = 11 =1

Gii)  (1-ee; = (1-0.05/005 =19

(v) (1 -e3)e, (1-0.05)0.05 = 19

A

) 1/F,, = 10
i) (1-e)le; = (1-05/05 = 1.0
Total resistance = 0.333+1.0 + 19 + 19 +1.0 +1.0
= 41.333
The net heat transfer with shield is :

o(T\ -T2
@A) = —(—z'—R—Q

where 6 = 5.67x 108 W/(m2K*
T,= 750K, T,=500K and ¥R =41.333

(—4 — 4
5.67 x 10-® \750 —500

(Q/A)s = 21333
= 348.30 W/m?
70 - 348.3
- 9, reduction in heat transfer due to the shield = Ql__%ﬁ_a_f}__ x 1000 = 9434 ... Ans.

Example 4.21 : Two very large parallel planes with emissivities 0.3 and 0.8 exchange heat.
Caiculate the percent reduction in heat transfer when a polished-aluminium radiation shield of
emissivity 0.04 is placed between them.

Solution : Let the planes be at temperatures T,and T, respectively.

The radiant heat transfer without the shield is
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where e, =03 ¢ =08
A 4
aA = olgT';Tz! = 02791 [0 (T1-T3)] = 0.2791 2 W/
03*08"!
where z = 6(T'-T))

Heat transfer with the radiation shield of emissivity (e;) of 0.04 :
The radiation network for this problem is the same as that shown in Fig. E 4.20 (B).

The resistances are :

() (1-e)e, = (1-0.3)/0.3= 2.333
(ii) IFF, = 10
(iii) (1-e)e; = (1-0.04)0.04 = 24
(iv) (1-e)le; = (1-0.04)0.04 = 24
™) 1/F, = 1.0
@iv) (1-e)le, = (1-0.8)/0.8 = 0.25

Total resistance = 2.333 + 1.0 +24 +24 + 1 + 0.25 =52.583
The radiant heat transfer with the shield placed between the two planes is

_ O‘(T:—T;) G(ﬁ-T;)

QA)s = —FR = "52583
= 001906 (T{-T3) = 0.019z W/m?
(Q/A)s - Q/A

% reduction in heat transfer using shield = —(W x 100

o 0.27912-0019z
% reduction in heat transfer = 0.2791 z x 100

= 932 ... Ans.
The heat transfer is reduced by 93.2 percent by interposing the shield.

Example 4.22 : The parallel plates 0.5 by 1.0 m are placed 0.5 m apart. One plate is
maintained at 1273 K (100°C) and second plate at 773 K (500°C). The emissivities of these
plates are 0.2 and 0.5 respectively. The plates are located in a very large room, the walls of
which are maintained at 300 K (27°C). The plates exchange heat with each other and with
surroundings but only the plate surfaces facing each other are to be considered in the analysis.
Find the net heat transfer to each plate and to the room.

Data : Radiation shape factors between first-second plate and between second-first plate are
0.285 each, between first plate and room is 0.715 and between second plate and room is 0.715.
Surface resistance of the room may be taken as zero.
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- Heat Transfer

4.35 Radiation
Solution :
T, =1273K €,
7 WWWW——
1-e
® o

E Room-at-300-K

T,=773K

E
(a) Schematic (b) Network >
Ep=oT, Jq ) Ep2
o MWW Q AW p VWA °
8.10 2.0

7.018

Epy=oT, =J;
(c) Network for problem

Fig. E 4.22

It is a three body problem, two plates and the room, therefore the radiation network is as

shown in Fig. E 4.22.

1273K, T, = 773K and T, = 300K
A, = 05% 1 =0.5m?
02 and e,=0.5

F 0.285

it

21

F 1.0

12

= 1-0.285 = 0715

1-0.285 = 0.715

Scanned with CamScanner



SrwwL Vi@ 1L A - i

The resistances of the network are calculated as :
1-e/e, A = 1~-02/(02x%0.5) = 8.0
1- ezlez Az = ] —05/(0.5 P 0.5) =20

1
2

3. 1/AF,, = 1/(0.5%0285) = 7.018
4. VAF, = 105%0.715= 2.797
5

6

1/A.F,, = 1/0.5%0.715 = 2.797
. 1-eyes;A; = 0 (given)
For calculating the heat flow at each surface, we must determine the radiosities J, and J,.
This network is solved by setting the sum of heat currents entering nodes J, and J, to zero.

Bb|"]l Jz—Jl Ebg—JI

NodeJ;: =35~ + 7018 + 2797 =0 | - (@)
-3, Ep,=Jy Ep, -1 -
Node),: 7578 + 5797 * — 20 =0 -+ (b)

E, = oT = 567x10° (iz3 ) = 148900 W/m?

E, = oT: = 5.07x 104(7’7"3 ‘) = 20244 W/m?

2
- ot serion ()
Ep, oT; = 5.67x102\ 300 / = 459 W/m?

Substituting the values of Ep,, Ep, and Ey, in Equations (a) and (b) and solving

simultaneously, we get
J, = 33515 W/m? and J, = 15048 W/m?
J3 = Ep, = 459 W/m?
The total heat lost by the plate-1 is

Ep, -J; 148900 — 33515
Q =T eyea = 30 = 14423 W/m? ... Ans.

The total heat lost by the plate-2 is

Eb, =12 20244 - 15048
Q = 0Ceea, = 20 = 2598Wm2 .. Ans.

The total heat received by the room is
Ji-1s J,-Js

Q3 =" 5 +
JIA\F, VAR,

_ 33515-459 15048 — 459
= 2797 YT 2797

17034 Wm* | ... Ans.
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Here, the overall heat balance must be satisfied :

Q =Q+Q
because the net energy lost by both plates must be absorbed by the room.
17034 W/m® = 14423 + 2598 = 17021 W/m’ ... Ans.

Example 4.23 : Two very large and parallel surfaces each having an emissivity of 0.7. With
surface-1 is at 866.5 K (593.5°C) and surface-2 at 588.8 K (315°C) some distance apart. What is .
the net radiation loss of surface-1 ? To reduce this loss, two additional radiation shields also
having an. emissivity of 0.7 each are placed between the original surfaces. What is the new

radiation loss ?

Solution :
Shield
QA QA
—_— 61 92 S 81 93 33 64 94 62
1 2 1 3 4 2
(b)

(a) :
Fig. E 4.23 : Radiation between planes with and without shields

The net radiation heat loss without shields is
6 (Ti-T2)
QA = Tje, + 1/e,- 1
6 = 5.67x 108 W/(m*K*)
e, = € =07
T, = 8665K and T, = 588.8 K

where

4 4
5.67 x 10-2\866.5 — 588.6
Q/A = 1/0.7(_'_ 1/0.7 - 1 ) =135414 W/m?
= e, = e, = €=0.7, we have
Q with n shields = n—-lr—l Q without shields

n. = Number of shields =2

For the simple case ofe, =€,

where ‘
. e aa 1
Q with shields = 777 X 13541.4

4513.8 W/m? . Ans.
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HeatTranster 438
Alternately,
We have with shields :
o (11-12)
QA = nog
(fe)+ (e +2 X o--@+1)
1=1
o(Ti-13)
Forn=2, QA = e+ (e + 2 [Ves, + 1eg,] -2+ 1)
o (T{-T%)
" e el
1/e,+ 1 e2+esl +es2_
(4] (T',‘ - ’Ié)
= 1/e,+ /e, + 2/es + 2/es, -3
Here e, =€, = ¢ =€, =¢e =07

(3663 - 5888
5.67 x 108\866.5 — 588.8
QA = 7/0.7+1/0.7 + 2/0.7 + 2/0.7 - 3

=.4513.9 W/m?

Example 4.24 : A cryogenic fluid flows through a tube 30 mm diameter concentric with a
tube of 90 mm diameter, the surface emissivities of inner and outer tube are 0.12 and 0.15 and
are at temperatures of 100 K (-173°C) and 300 K (27°C) respectively. Determine (i) the heat
gained by fluid per 1 m length of tube and (ii) percent reduction in heat gain, if the radiation
shield with diameter 45 mm and emissivities 0.1 on the inner surface and 0.05 on the outer

surface is interposed between the tubes.
Solution : (I) Without shield :
__A0(Ti-T3)
Q = Te,+AJA,(/e,- 1)
e, = 012, e,=0.15 T, =100K, T,=300K

where

A =2nr L and A= 2nr,L r, = 15mm =0.015m

r,=45mm= 0.045m

2mr6(Ti-T;)  2mx0.015 X 5.67 x 10-8 (1'0_0 *_300 4)

QL = {e+1/r, (eg—1) = 1 0015
1+ /1y (1/ey—1) L 0015 615

0.12 1 0.045
= —4.182 W/m

—ve sign indicates that the net heat flow is in the radial inward direction. .
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Radiation

(II) With cylindrical radiation shield :

Q& 2nr,0 (T0-T3)
L = Ve + /(e 1) + 0, (/s Teg— 1))

where r; = 225mm = 0.0225m.

e; = 0.10 and e, = 0.05

Q  _ 2%x0015x5.67x10* (fo0* - 300)
L = 1 0015 (1 1) 0.015 (1 1 1)
0.1210.045 \0.15 ') *0.0225 \0.1070.05

= —1.446 W/m?

4.182 - 1.446

Radiation network work approach :
With shield : Take L =1m

L o (Ti-T3) .
Q) =1"¢, 1 1-e l-e 1 l-e

e A * C e3A; * esA; +A3F32 ¥ & A;
AF,

The resistances involved in the network are calculated as :

G (-e)e,Aj=(1-012)/0.12X2X®X 0.015 x10 =798

Gi) VA F;=12xxtx0015x10x1.0 = 10.6

(i) (1-e)/(e;A;) = (1-0.1000.10x2x 1t x0.0225%x 1.0 = 63.66
Giv) (1-e)e,A;=(1-0.05/0.05x2xmx0.0225x1.0 = 1344
(v) VA;F,=12x%xx00225x1.0x1.0 = 7.08

vi) (1-e)le A, =(1-0.15)/0.15%x2xxx0.045% 1.0 = 20.04

YR = 79.8+10.6 +63.66 + 134.4 + 7.08 + 20.04 = 315.58

5.67 x 104(1?0‘-330‘)
Qs = 315.58

-1.44 W/m?
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