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Abstract
Biometric technology is advancing with gait recognition, which analyzes walking patterns to identify people. This pattern is
derived without the direct participation of individuals, from a distance. Frontal gait data is highly valuable in confined spaces
like narrow corridors, which is common in most buildings. Within this scope, this study introduces a successful approach
to identify individuals in frontal-view gait sequences. By utilizing contour image and vertices, the proposed method obtains
three differentiating feature vectors from the Gait Energy Image (GEI). Its efficient capture of spatial dynamics leads to
improved gait recognition performance. The proposed approach’s effectiveness was evaluated using the widely used gait
datasets such as CMUMoBo, CASIA A, and CASIA B. Through the experiments, it was proven that the proposed approach
delivers promising outcomes and performs better than certain state-of-the-art approaches in recognition.

Keywords Gait energy image · Gait recognition · Feature extraction · Classification

1 Introduction

Thebiometric recognition systemhas become an integral part
of numerous real-world applications, given its compelling
nature. Fingerprint, face, and iris recognition are among the
biometric systems that have gained significance and relia-
bility in real-world applications. The way someone walks,
known as gait, is also considered a biometric trait. The reason
why gait recognition is appealing is because it can iden-
tify individuals by analysing their walkingmannerisms, even
from a distance. Concealing one’s gait is challenging. Unlike
other behavioural biometric traits, this one can be evaluated
without any physical interaction. Therefore, Its significance
in surveillance applications is evident [1, 2].

In general, gait detection approaches can be categorized
as either appearance-based or model-based. The model-

B R. Anusha
anur.research@gmail.com

C. K. Sunil
sunilck@iiitdwd.ac.in

1 Department of Computer Science and Engineering, Bapuji
Institute of Engineering and Technology, Davanagere,
Karnataka 577004, India

2 Department of Computer Science and Engineering, Indian
Institute of Information Technology Dharwad, Dharwad,
Karnataka 580009, India

based methods in use gait sequences to model the motion
of the human body [3]. These techniques analyse joint
movements in order to measure various aspects of gait,
including direction, hip, knee, ankle, and hand movements.
These methodologies are not only scale invariant, they
are also computationally expensive since they require the
modelling and tracking of the subject’s body. In addition,
high-resolution images are also required by them. On the flip
side, appearance-based methods involve performing opera-
tions directly on gait silhouette images, bypassing the use
of an explicit model. According to recent literature, the use
of different templates in appearance-based approaches has
yielded highly successful outcomes in gait identification.

The following part focuses solely on frontal gait recogni-
tion research. Soriano et al. [4] developed a descriptor called
curve spread specifically for front view gait videos. Using
Freeman code, the time-variations of amoving body’s outline
are represented as a 2D vector. Further, the feature extraction
method proposed by Anusha and Jaidhar is based on shape
descriptor. To classify frontal gait silhouettes, they employed
a method called similarity measurement. The authors Siva-
palan et al. [5] put forth a recommendation for amethod using
frontal depth images. Here, the GEl concept is expanded
to 3D, leading to the development of gait energy volume.
Additionally, the study highlights the effectiveness of recon-
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structing partial volumes using depth images from the front
view.

The solution presented by Chattopadhyay et al. [6] for
occlusion in frontal gait recognition involves the use of
kinetic depth data. They extract features from the depth data
and silhouette edge to capture the back view. The authors
Chattopadhyay et al. [7] developed the feature pose depth
volume by reconstructing the surface’s partial volume from
frontal view silhouettes. The author also suggested a hier-
archical classification strategy that combines the descriptors
from RGB-D cameras [8]. A gait template known as "march-
ing in place" was proposed by Ryu and Kamata [9] to
maintain the spatial and temporal features of human gait
sequences. Most of these methods employ frontal gait recog-
nition, but they typically rely on gait data from Kinect with
a limited number of subjects for performance analysis.

Maity et al. [10]’s study addresses two important issues
that have been overlooked in surveillance video research.
Here, the robust gait recognition framework is achieved using
only the frontal view images by combining model-free and
model-based gait feature extraction. Moreover, it makes use
of a low-resolution face recognition approach that can be
trained and tested with low-resolution facial characteristics.
Deng et al. [11] presents a new approach to gait recognition,
focusing on frontal views and incorporating gait dynamics
and deep learning. The author examines binary walking sil-
houettes in this work by analysing three frontal-view gait
features: spatial ratio, kinematic, and area. Zhang et al.
[12] introduces GaitNet, a groundbreaking framework that
extracts canonical, appearance, and pose features from RGB
images. The LSTM captures dynamic gait features by inte-
grating pose features over time and uses canonical features
for static gait representation. The relationship between sil-
houette and dense optical flow features in frontal gait images
was investigated by Deng et al. [13] using the multi-modal
fusion module, squeeze and excitation operations.

Sheshadri and Okade [14] examines how Kinect can be
used for gait recognition of individuals in surveillance set-
tings, particularly in narrow corridors and airports where
only frontal views are accessible. A hierarchical framework
is created to identify the subject that closely matches by
incorporating two skeleton features and one feature obtained
from segmenting depth data. Deng et al. [15] proposes an
innovative approach to identify human gait by utilizing gait
dynamics and deep transfer learning. The frontal human sil-
houettes in this work are characterized by four gait features
that undergo changes over time: lower limb area ratio, lower
limb length ratio, swing angle of lower limb, and swing area
of lower limb. In conclusion, It can be inferred that themajor-
ity of recent research in frontal gait recognition depends on
spatial data for enhanced recognition performance.

2 Motivation and contributions

Despite significant advancements in gait recognition, system
performance is primarily influenced by various covariate fac-
tors including walking speed, view angle changes, elapsed
time, walking surface, and carrying conditions. Among the
different covariates, the variations in view angle stand out
as a crucial factor. In the frontal view, the spatial and tem-
poral differences in the gait data are less noticeable than in
other views. [15–17]. This study presents an approach that
improves the effectiveness of the frontal gait recognition sys-
tem.

Based on the above discussion in introduction, appear-
ance based methods are not only superior to model-based
methods in terms of performance, but also more suitable for
surveillance environments and computationally efficient [2,
18–20]. Gait features are derived by extracting shapes and
contours from human silhouette images in most appearance-
based individual identification systems.

Pattern recognition, image analysis, and computer vision
methods rely heavily on contour detection as a primary step.
Utilizing a contour detection algorithm on a gait image pro-
duces connected vertices and curves that indicate subject
boundaries and surface orientation discontinuities. By apply-
ing the contour detection algorithm to a gait image, there can
be a substantial decrease in the amount of information that
needs to be processed.Additionally, it has the potential to dis-
card less important data while preserving the main structural
features of a gait image. Thus, this paper introduces a gait
representation method that utilizes spatial features extracted
from GEI’s contour image and vertices.

To sum up, this study’s contributions are as follows:

1. This study introduces three feature vectors that improve
the reliability and provide a more accurate representation
of the spatial variations in a frontal gait.

2. The feature vectors being proposed comprise of features
from the frontal contour image that are uniformly dis-
tributed and track small alterations in the GEI shape. This
leads to an improvement in gait recognition performance
as the inter-class variance increases.

3. Utilizing both ensemble classifier and feature modeling
together, the proposed system achieves better results.

4. Performance evaluation of the proposedmethod involved
a comprehensive experiment using widely used gait
datasets. The results are evaluated in relation to state-
of-the-art and other contour-based gait recognition tech-
niques.

The proposed method specifically handles frontal gait,
which has multiple uses like a classroom attendance system
that captures student data upon entering a classroom from
front view. The same can be applied to employees in any
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Fig. 1 The proposed framework for gait recognition

organization, capturing their data as they enter. Thismonitors
or gathers information about people walking in a building.
This can also function as a means of access control, prevent-
ing certain individuals from entering a space. That refers to
the prevention of unauthorized access to certain areas. Gen-
erally, in wide spaces, recognition can be accomplished by
using the side view. In situations like narrow corridors where
space is limited, frontal data is extremely valuable, and this
is often the case in most buildings. Frontal images have an
abundance of spatial data, but lack significant temporal or
dynamic data. Further, the utilization of contour images and
vertices inGait Energy Images allows for the effective extrac-
tion of distinctive features, leading to a higher recognition
accuracy as spatial data dominates frontal images.

Further, section 3 of the paper offers a detailed explana-
tion of the proposed methodology, while Sect. 4 presents an
illustration of the experimental results. The conclusions are
provided in Sect. 5.

3 Proposedmethod

Figure 1 illustrates the outline of the proposed method. It is
composed of three different stages. The gait silhouettes are
merged to create a GEI during the initial stage. The GEI is
used to extract the contour vertices and contour image. Dur-
ing the second stage, the contour vertices and contour image
of the subjects in both the training and testing dataset produce
three distinct feature vectors. At last, the features are classi-

fied by the proposed ensemble classifier. The testing dataset
is used to measure the performance of the gait recognition
system, which is indicated by the Correct Classification Rate
(CCR).

3.1 Extraction of contour image and vertices

The GEI maintains and portrays the fluctuations in a gait pat-
tern’s spatial and temporal aspects. Compared to the other
lateral views, the temporal information present in frontal
view GEI template is minimal. Hence, developing a compact
representation for spatial data can enhance the performance
of frontal gait recognition by increasing inter-class variance.
So, extracting the contour of the GEI allows for obtaining
precise shape details, facilitating the accomplishment of this
task.

To create a contour for a GEI image, the marching squares
algorithm [21] is utilized with an isovalue of 0.5, and the
precise contour position is determined through linear inter-
polation. When this method is used on the GEI, it generates a
collection of vertices S(x, y). The GEI’s boundary is defined
by these vertices. Therefore, it demonstrates that the GEI
front view has limited temporal information. Figure2 illus-
trates the use of these vertices to obtain a greyscale contour
image, GC I (x, y).

3.2 Feature extraction

Increasing the performance of a gait recognition system is
highly dependent on extracting the most discriminatory fea-
ture vectors. The steps of feature extraction are demonstrated
in Algorithm 1.

Here is the mention and explanation of the three proposed
feature vectors: (1) Region data vector, (2) Length contour
vector, and (3) Vertex position vector.

Algorithm 1 Feature extraction
Input: GC I , of size p × q.
Output: Feature vector, FV .
Process an input contour image.
Calculate the region data vector, RDv .
Compute length contour vector, LC .
Compute vertex position vector, Verv .
The three feature vectors are concatenated to form the final feature
vector, FV = {RDv , LC , Verv}
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Fig. 2 The CASIAB gait dataset sample images of two subjects, show-
casingaGEI,b a contour generated throughmarching squares algorithm
and linear interpolation, and c a contour image

3.3 Region data vector

Let’s take into account a greyscale contour image (GC I ) that
has a size of p × q.

GC I =

⎡
⎢⎢⎢⎢⎣

GC I(1,1) GC I(1,2) ...... GC I(1,q)

GC I(2,1) GC I(2,2) ...... GC I(2,q)

. . ...... .

. . ...... .

GC I(p,1) GC I(p,2) ...... GC I(p,q)

⎤
⎥⎥⎥⎥⎦

(1)

The rowsof theGC I are representedby rw1, rw2, ..., rwp

and the columns are represented by cn1, cn2, ..., cnq . All pix-
els outside the contour in theGC I that have an intensity value
of 0 should be replaced with 255. The contour replacement
results in the shape of the subject being represented by the
pixels with intensity 0 in the GC I .

3.3.1 Horizontal span

The number of 0 intensity pixels in each row of the contour
image is used to compute the horizontal span. Suppose we
have a contour image, GC Ih, and let rwk denote the kth row
within it.
Here, rwk= [GC Ih(k,1) GC Ih(k,2) ...GC Ih(k,q)]. In this
instance, the value of a pixel at position GC Ih(k, j), where
j = 1, 2, .., q, is provided by

GC Ih(k, j) =
{
1 if GC Ih(k, j) = 0

0 otherwise
(2)

The row rwk has a horizontal span of rwk , which is cal-
culated as the sum of GC Ih(k, j) for all j from 1 to q. That
is, rwk = ∑q

j=1 GC Ih(k, j)

3.3.2 Vertical span

The number of pixels with intensity value 0 in each column
of the contour image is counted to calculate the vertical span
followed by keeping a count column-wise. Consider a con-
tour image, GC Iv and let rck be the kth column in GC Iv.

rck =

⎡
⎢⎢⎢⎢⎣

GC Iv(1,k)

GC Iv(2,k)

.

.

GC Iv(p,k)

⎤
⎥⎥⎥⎥⎦

(3)

The value of a pixel at position GC Iv(z,k), where z =
1, 2, ..., p, can be determined using this equation.

GC Iv(z,k) =
{
1 if GC Iv(z,k) = 0

0 otherwise
(4)

The column rck has a vertical span of vck , which is cal-
culated as the sum of GC Iv(z,k) for z ranging from 1 to p.

Consider the horizontal span obtained by removing values
equal to 0, labeled as GCHw=[hr1 hr2... hrp] of size 1 ×
p. Also, let GCVl = [vc1 vc2 ... vcq ] be the vertical span
obtained for the after removing the values with vck equals to
0.

Concatenate the horizontal span vector GCHw with the
vertical span vectorGCVl in order to obtain the region vector
RDv . Take the RDv vector and divide each of its elements
by the total number of elements, t .

RDv = [
rd1/t rd2/t ...... rdt/t

]
(5)

When dealing with fuzzy sets, the information value is
calculated by multiplying the information source value with
its Membership Function (MF) value [22]. By utilizing the
information set, which is a collection of these values, we can
extract spatial dynamics as depicted below.

The source of information being considered is the region
vector denoted as:

RDv = [
RD1 ... RDt

]
(6)

In order to calculate Gaussian MF, we obtain the mean
and standard deviation by:

μRD = 1

t

t∑
i=1

RDi and σ RD = 1

t

t∑
i=1

(RDi −μRD)2 (7)
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The following gain function is utilized to obtain the vector
of Gaussian MF.

g(RDi ) = e−(RDi−μRD/σ RD)2 where i = 1, 2..., t . (8)

The region data vector is derived by extracting the features
of the region vector. That is,

RDv = [
RD1 × g(RD1) ... RDt × g(RDt )

]
(9)

3.4 Length contour vector

Representing the contour’s vertices as C(xd , yd), we have d
ranging from 1 to n. There are three distance algorithms that
can be used to calculate the distance between two consecutive
vertices C(xm, ym) and V (xm+1, ym+1).

The length of the contour vector is determined by adding
the distances between consecutive vertices, (RL). That is,
Euclidean: EUCm = √

(xm − xm+1)2 + (ym − ym+1)2, the
next is, Manhattan : MANm = |xm − xm+1|+|ym − ym+1|,
and
Chebyshev : CHEm = max{|xm − xm+1| , |ym − ym+1|}.

The sum of distances between consecutive vertices gives
the contour length vector (LC ). It is provided by:

LC EUC = EUC1 + EUC2 + ...... + EUCn−1 (10)

LCMAN = MAN1 + MAN2 + ...... + MANn−1 (11)

LCCHE = CHE1 + CHE2 + ...... + CHEn−1 (12)

3.5 Vertex position vector

This vector aims to extract the positional information of every
contour vertex.Consider aGC I of sizem×n,where the value
ofm and n is equal. Divide it into two equal contours. that is,
right and left contour. Denote the vertex on the right and left
contour as VerL(x, y) and VerR(x, y). The next step is to
calculate the arctangent for the specified x and y coordinates
of vertex VerL(x, y) and VerR(x, y). The arctangent of any
vertex Ver(x, y) is expressed as Verθ = atan2(x, y).

Extracting the arctangent of all contour vertices (left and
right contour) results in the formation of the vertex position
vector, which contains the location information. The forma-
tion of a vertex position vector is indicated by:

Verv = [
Verθ1 Verθ2 ... Verθn−1 Verθn

]
(13)

3.6 Feature representation

The discriminative ability of the extracted feature vector
is shown in the four feature space diagrams. The features
derived from the horizontal span and vertical span vector are

Fig. 3 Diagram showing the horizontal span vector obtained from a
three contour images C I ’s belonging to the same subject and b a single
contour image belonging to three different subjects

illustrated in Fig. 3 and 4. The features from the length con-
tour vector are illustrated in Fig. 5. Figure ( 3), ( 4), and
( 5) illustrate the feature vectors extracted from different
C I ’s (Contour Image) and subjects, with the first diagram
(a) showing three C I ’s of the same subject and the second
diagram (b) displaying features from a singleC I of three dif-
ferent subjects. The feature space diagram clearly indicates
that there are minimal variations within three gait cycles for
the same subject, but significant variations between the gait
cycles of three different subjects.

The separation of the curves represent a considerable dif-
ference between inter-class distances in Fig. 3b, 4b,and 5b.
The discriminative power of the features under considera-
tion is demonstrated by the small intra-class variances in
Fig. 3a, 4a, and 5a. The shape of the C I ’s for the same
subjects appears similar when observed in the feature space
diagram. This ensures that the extracted characteristics are
differentiating.
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Fig. 4 Diagram showing the vertical span vector obtained from a three
contour images C I ’s belonging to the same subject and b a single con-
tour image belonging to three different subjects

4 Experimental setup

In this study, the variations in spatial data cause discrepan-
cies in the lengths of the region data vector found in each
contour image. The range of values detected for differentC I
is consistently small, though it varies. Linear interpolation
is employed to resample the vector and maintain consistent
number of features for all C I ’s in the CASIA B gait dataset.
Consequently, we determine and acquire the minimum and
maximum length of the region data vector for all C I in the
dataset. The minimum and maximum vector lengths are 298
and 315, respectively, with a 17-unit difference. The aver-
age length is 306.5. The size of the vector is adjusted to 307
through resampling. As a result, a feature vector of size 307 is
generated for each contour image. The contour length vector
does not change in size for anyC I . Lastly, the formation of a
vertex position vector of length 480 is achieved by extracting
the arctangent of all contour vertices (left and right contour).
To obtain a consistent feature vector from all subjects in a
specific dataset, the same procedure is applied to CASIA A
and CMU MoBo gait datasets.

Fig. 5 Diagram showing the length contour vector obtained from a
three contour images C I ’s belonging to the same subject and b a single
contour image belonging to three different subjects

This study is solely aimed to identify substantial features
that contain maximum spatial information and are distinct
for subjects, thereby enhancing performance. The nature of
the computation of the proposed feature vectors ensures that
all extracted measures in the feature set are positive scalar
values.

The GEI and CI dimensions used in this study were
240x240 fromCASIAA,CASIAB, andCMUMoBodataset.
Our analysis of the contour vertices and images from the
training and testing datasets resulted in the creation of three
feature vectors. Consequently, the ensemble classifier is used
to classify the proposed gait features. In this case, we are
dealing with a multiclass classification problem to predict
the outcome. By utilizing the proposed feature vectors, the
relevant sets of features are extracted and fed into a classifi-
cation model to identify the subject. The prevailing research
on gait recognition has focused on KNN, SVM, Random
forest classifiers, which have yielded satisfactory prediction
accuracy.

The literature investigates the use of multiple classifiers
in gait recognition to tackle different challenges, and recent
studies have demonstrated the effectiveness of ensemble
classifiers in subject identification. Prediction is improved
by utilizing an ensemble of classifiers that combine their
opinions through majority or probability based voting. By
leveraging the strengths of different classifiers, we can over-
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Table 1 The proposed method’s recognition accuracies on the CMU
MoBo dataset are compared with existing methods

Method B/F F/B B/I F/I B/S F/S

Huang et al. [23] 88 92 88 84 96 96

Proposed method 94 100 96 96 100 100

Method I/B S/B I/F S/F I/S S/I

Huang et al. [23] 75 96 88 96 92 92

Proposed method 92 98 94 100 100 98

The bold value signifies the highest recognition accuracy obtained for
a particular dataset

come their individual limitations. As a result, we investigated
multiple advanced classifier techniques across various bench-
mark datasets and put forward a versatile prediction model.
All categories of datasets can be processed using the pro-
posedgeneralizedmodel.BycombiningSVM,RF (bagging),
and GBM (boosting), a single classificationmodel is created,
with all three classifiers working in parallel.

The output of the proposed ensemble classifier is deter-
mined by the highest probability-based voting, using proba-
bility values providedby each classifier for the given subjects.
The highest average probability class determines the classi-
fication of the subject, which is obtained by averaging the
output probabilities from the three classifiers. The SVMclas-
sifier was applied in this study with C=4.0 as the penalty
parameter and the RBF kernel function, chosen for its supe-
rior performance in handling input noise. It is a widely
known fact that adding more decision trees in the RF classi-
fier decreases over-fitting and enhances prediction accuracy.
Consequently, a RF classifier is employed, consisting of 335
decision trees, a value determined through empirical identi-
fication.

We observed that adding more trees did not result in
better prediction accuracy in our experiments. By select-
ing regression trees as weak predictors and negative gradient
multinomial deviance as the loss function, we implemented
theGBMclassifier. Gradient boosting can handle over-fitting
fairly well with a higher number of weak predictors (boost-
ing stages). Consequently, we decided to set the number
of boosting stages at 335. It should be mentioned that the
hyperparameters of our ensemble classifier remain constant
throughout all experiments, with the prediction accuracies
documented across all datasets.

5 Experimental results and discussion

In this empirical study, we used three well-known gait
datasets, namely CASIA A, CASIA B, and CMU MoBo,
to evaluate the performance of the proposed feature extrac-
tion method. In the CASIA A gait dataset [24], there are 20

Table 2 The average recognition accuracy of the concatenated vector
compared to three individual feature vectors

Database View Verv LC RDv FV

CASIA A 00 91.11 83.56 95.21 100.0

CMU MoBo I/F 77.00 62.00 83.00 95.00

CMU MoBo I/S 85.00 70.00 84.00 93.00

CMU MoBo I/B 81.00 73.00 84.00 93.00

CMU MoBo B/S 89.00 80.00 95.00 100.0

CMU MoBo B/F 79.00 65.00 85.00 95.00

CMU MoBo B/I 71.00 68.00 87.00 97.00

CMU MoBo S/B 83.00 74.00 92.00 99.00

CMU MoBo S/F 93.00 76.00 93.00 100.0

CMU MoBo S/I 85.00 75.00 94.00 99.00

CMU MoBo F/S 89.00 78.00 92.00 100.0

CMU MoBo F/I 85.00 72.00 86.00 97.00

CMU MoBo F/B 88.00 79.00 94.00 100.0

CASIA B 00(NM/NM) 79.66 64.67 92.50 99.60

CASIA B 1800(NM/NM) 80.77 68.06 90.98 99.10

CASIA B 00(NM/BG) 81.10 68.00 90.44 99.44

CASIA B 1800(NM/BG) 76.42 56.00 89.47 98.97

CASIA B 00(NM/CL) 86.97 65.19 95.00 99.47

CASIA B 1800(NM/CL) 84.06 56.23 91.76 99.22

Average 83.42 70.19 90.22 98.55

The bold value signifies the highest recognition accuracy obtained for
a particular dataset

subjects. As a result, we acquired 80 gait sequences from
20 subjects at the 00 angle. Table 2 presents the results of
the proposed approach on CASIA A dataset for 00 view. For
training, three sequences are selected out of the four, leaving
one for testing. According to the results presented in Table 2,
the proposed method yielded a 100

In this work, the results from the CMUMoBo dataset are
presented, which consists of gait videos capturing 25 individ-
uals walking on a treadmill. The gait videos were recorded
with different walking techniques: fast walk (F), slow walk
(S), walkingwith a ball (B), andwalking on an incline (I). For
both the gallery and probe datasets, all four forms of walking
(F/B representing gallery F and probe B) were employed.

The results of the proposed approach on CMU MoBo
dataset for the frontal view is shown in Table 1. Table 1 pro-
vides clear evidence that the proposed method has achieved
a high CCR in most cases and yielded compelling results. It
demonstrated exceptional performance on the CMU MoBo
dataset, surpassing othermethods for almost all gallery/probe
combinations. The experiment primarily examined difficult
cases, including walking with a ball and on an inclined plane
such as B/I, F/I, B/F, I/B, I/F, and F/B, apart from changes
in walking speed like S/F and F/S. The performance of the
proposedmethodwas impressive, especially in themost chal-
lenging cases.
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Table 3 On the CASIA B gait
dataset, the recognition rates of
the proposed method

Exp Gallery set Gallery size Probe set Probe size CCR (%)

1 00(NM) 124× 4 1800(NM) 124× 4 96.50

2 00(NM) 124× 4 1800(NM) 124× 3 97.77

3 00(NM) 124× 4 1800(NM) 124× 2 97.82

4 00(NM) 124× 4 1800(NM) 124× 1 96.00

5 00(NM) 124× 4 1800(BG) 124× 2 97.24

6 00(NM) 124× 4 1800(BG) 124× 1 99.00

7 00(NM) 124× 4 1800(CL) 124× 2 97.50

8 00(NM) 124× 4 1800(CL) 124× 1 98.17

9 1800(NM) 124× 4 00(NM) 124× 4 95.28

10 1800(NM) 124× 4 00(NM) 124× 3 94.73

11 1800(NM) 124× 4 00(NM) 124× 2 93.95

12 1800(NM) 124× 4 00(NM) 124× 1 96.52

13 1800(NM) 124× 4 00(BG) 124× 2 97.89

14 1800(NM) 124× 4 00(BG) 124× 1 98.10

15 1800(NM) 124× 4 00(CL) 124× 2 98.50

16 1800(NM) 124× 4 00(CL) 124× 1 99.00

Table 4 Evaluating the
performance of the proposed
method and existing methods on
CASIA B gait dataset

00 1800 00 1800 00 1800

Methodology NM/NM NM/NM NM/BG NM/BG NM/CL NM/CL

Alotaibi and Mahmood [25] 90.67 83.99 91.98 87.76 88.77 90.00

Choudhury and Tjahjadi [26] 100.0 99.00 93.00 89.00 67.00 66.00

Isaac et al. [27] 98.50 98.99 95.00 94.44 97.00 93.94

Rida et al. [28] 97.97 97.58 72.76 76.11 80.49 83.06

Anusha and Jaidhar [29] 98.70 98.97 98.56 95.06 97.56 94.58

Proposed method 99.60 99.10 99.44 98.06 99.11 98.22

The bold value signifies the highest recognition accuracy obtained for a particular dataset

Table 5 The proposed method’s recognition accuracies on CASIA A
andCASIABgait dataset are compared to existing contour-basedmeth-
ods

00 (NM) 00 (NM)

Method CASIA B CASIA A

Ye and Wen [30] 83.37 92.25

Wang et al. [31] 72.14 88.75

Anusha and Jaidhar [29] 98.70 97.00

Liu et al. [32] 98.99 100.0

Lee et al. [33] 97.39 97.75

Proposed method 100.0 100.0

The bold value signifies the highest recognition accuracy obtained for
a particular dataset

We assessed the proposed method using the CASIA B
gait dataset. This dataset contains gait information from 124
subjects, captured from 11 angles between 00 and 1800. For
each subject, there are six normal walking sequences (NM),
two carrying conditions sequences (BG), and two clothing
variations sequences (CL).

The dataset was subjected to two experiments. The train-
ing initially employed thefirst fourNMsequences. In order to
evaluate normal, clothing, and carrying variations, the other
two sequences ofNM,CL, andBGwere employed for testing
purposes. The proposed method was tested on both 00 and
1800 views to determine its effectiveness, given the consid-
erable resemblance in the GEI images. Our proposed method
proved to be significantly better than othermethods, as shown
in Table 4. The results highlighted how well it could handle
variations in carrying and clothing.

Secondly, we compiled a training dataset that included
NM gait sequences from both 00 and 1800 viewpoints. Each
subject was assigned four NM gait sequences for the train-
ing process. The training dataset contained 496 different gait
patterns. Table 3 displays the varying number of C I ’s in the
testing dataset. Table 3 showcases the results of 16 exper-
iments using the proposed method. Experimental results
confirmed the effective capture of shape dynamics in frontal
gait images by the proposed method. Table 2 displays the
recognition accuracies for CASIA A, CASIA B, and CMU
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MoBo datasets using each of the four feature vectors individ-
ually as well as in concatenation, denoted as feature vector
FV . Observations showed that the feature vector FV exhib-
ited greater distinguishability compared to the individual
feature vectors. RDv had the highest average CCR among
the three feature vectors, while LC had a lower average CCR.
The use of feature vector FV resulted in an average recog-
nition accuracy increase of 8.33%, surpassing the individual
accuracies of the four feature types. Due to its susceptibility
to shape variations in a gait sequence, the proposed feature
vector demonstrated the highest recognition accuracy.

The performance of the proposed method is compared to
other contour based gait recognition methods in Table 5. Sta-
tistical shape analysis serves as the basis for gait recognition
in both the contour-based algorithms in Table 5 and the pro-
posed method. This paper introduces an enhanced method
for feature extraction. Its primary objective is to enhance the
gaps between classes. The experimental findings in Table 5
demonstrate a significant improvement in performance for
the proposed method over other contour-based methods dis-
cussed in the literature.

6 Conclusion

The study suggests an approach to extract features for
improved frontal gait recognition performance. The gait fea-
tures beingproposed are captured from the contour image and
its vertices. The key finding of this study is the identification
of three feature vectors that are responsive tomeaningful spa-
tial alterations in gait sequences. Furthermore, the research
also showcases how it affects the rise in inter-class variability.
Experimental results demonstrate that using all three fea-
ture vectors together enhances gait recognition performance.
The proposed features were proven effective through exten-
sive experimentation on three gait databases. Based on the
experimental results, it is evident that the proposed method
surpasses several existing approaches discussed in the litera-
ture. Furthermore, future studies may focus on investigating
more sophisticated classification tools to enhance gait recog-
nition accuracy.
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