

Bapuji Educational association®

BAPUJI INSTITUTE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(DATA SCIENCE)

LABORATORY MANUAL

Database Management System (BCS403)
IV SEMESTER

Vision

To provide a quality and holistic education in data science,

data analytics, data visualization, industry collaborations and

research for empowering individuals to derive knowledge,

thereby transform the potentials in data for the betterment of

society.

Mission

M1 Educate and prepare students with a strong foundation in

data science, equipping them with the skills, knowledge,

and ethical principles needed to excel in data-driven

fields.

M2 Foster collaborations with industries to adopt modern

data science and visualization tools which solves the

real-world problems that have societal benefits.

M3 Cultivate a culture of life-long learning with

intellectual curiosity in data science and nurturing

individuals who are passionate about data-driven decision-

making

Program Educational Objectives:

PEO1 The graduates of program will have excellence

through principles and practices of

Information Technology combined with

Fundamentals of Engineering.

PEO2 The graduates of program will be prepared in

diverse areas of Information Science for

their successful careers, entrepreneurship

and higher studies.

PEO3 The graduates of program will work

effectively as an individual and in a team,

exhibiting leadership qualities,

communication skills to meet the goals of the

organization.

PEO4 The graduates of program will grove their

profession with ethics, Management principles

to carry societal responsibilities.

Laboratory Outcomes: The student should be able to:

1. Describe the basic elements of a relational database management system

2. Design entity relationship for the given scenario.

3. Apply various Structured Query Language (SQL) statements for database

manipulation.

4. Analyse various normalization forms for the given application.

5. Develop database applications for the given real world problem.

6. Understand the concepts related to NoSQL databases.

Programme outcome (PO’s)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyse complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modelling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal, and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Question 1

Create a table called Employee & execute the following.

Employee(EMPNO,ENAME,JOB, MANAGER_NO, SAL, COMMISSION)

1. Create a user and grant all permissions to the user.

2. Insert any three records in the employee table contains attributes

EMPNO,ENAME JOB, MANAGER_NO, SAL, COMMISSION and

use rollback. Check the result.

3. Add primary key constraint and not null constraint to the employee table.

4. Insert null values to the employee table and verify the result.

Solution

Create a database COMPANY and switch to it using the USE command.

mysql> CREATE DATABASE COMPANY;

Query OK, 1 row affected (0.14 sec)

mysql> USE COMPANY;

Database changed

Creating the Employee Table

Within the Database COMPANY create a table Employee as follows. Use the

SHOW TABLES; command to confirm that the table was indeed created.

mysql> CREATE TABLE COMPANY.Employee (

* EMPNO INT,

* ENAME VARCHAR(255),

* JOB VARCHAR(255),

* MANAGER_NO INT,

* SAL DECIMAL(10, 2),

* COMMISSION DECIMAL(10, 2)

*);

Query OK, 0 rows affected (0.91 sec)

mysql> SHOW TABLES;

+ +

| Tables_in_COMPANY |

+ +

| Employee |

+ +

1 row in set (0.00 sec)

We can verify the structure of this newly created Employee table using the DESC

command.

mysql> DESC COMPANY.Employee;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| EMPNO | int | YES | | NULL | |

| ENAME | varchar(255) | YES | | NULL | |

| JOB | varchar(255) | YES | | NULL | |

| MANAGER_N | int | YES | | NULL | |

O

| SAL | decimal(10,2) | YES | | NULL | |

| COMMISSIO
N

| decimal(10,2) | YES | | NULL | |

+ + + + + + +

6 rows in set (0.00 sec)

Create a User and Grant Permissions

mysql> CREATE USER IF NOT EXISTS 'dbuser'@'localhost' IDENTIF

mysql> GRANT ALL PRIVILEGES ON COMPANY.Employee TO 'dbuser'@'

Now logout and login with the new account credentials. Press Ctrl+D to logout.

Command to login with new user account is shown below.

$ mysql -u dbuser -p Enter

password:

Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection

id is 11

Server version: 8.0.37 MySQL Community Server - GPL Copyright (c) 2000, 2024,

Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or affiliates. Other names may

be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current mysql>

Now we have successfully logged with your new account. Change the current

database to COMPANY database using USE command. Now we will illustrate

how to insert records and also the COMMIT and ROLLBACK facilities.

Change the current database to COMPANY

mysql> USE COMPANY;

Database changed

mysql> SELECT * FROM Employee;

Query OK, 0 rows affected (0.00 sec)

START A TRANSACTION

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MANAGER_NO, S

* VALUES (1, 'Kavana Shetty', 'Manager', NULL, 5000.00, Query OK, 1 row

affected (0.00 sec)

 COMMIT DATABASE, db CONTENTS ARE WRITTEN TO THE DISK

mysql> COMMIT;

Query OK, 0 rows affected (0.06 sec)

 DISPLAY TABLE CONTENTS

mysql> SELECT * FROM Employee;

+ + + + + +

| EMPNO | ENAME | JOB | MANAGER_NO | SAL | CO

+ + + + + +

| 1 | Kavana Shetty | Manager | NULL | 5000.00 |

+ + + + + +

1 row in set (0.00 sec)

START ANOTHER TRANSACTION

mysql> START TRANSACTION;

 INSERT MORE RECORDS

mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MANAGER_NO, S

VALUES (2, 'Ram Charan', 'Developer', 1, 4000.00, NULL);

mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MANAGER_NO, S

VALUES (3, 'Honey Singh', 'Salesperson', 2, 3000.00, 500.00);

mysql> SELECT * FROM Employee;

+ + + + +

| EMPNO | ENAME | JOB | MANAGER_NO | SAL

+ + + + +

| 1 | Kavana Shetty | Manager | NULL | 5000.00

| 2 | Ram Charan | Developer | 1 | 4000.00

| 3 | Honey Singh | Salesperson | 2 | 3000.00

+ + + + +

3 rows in set (0.00 sec)

mysql> DELETE FROM Employee where ENAME = 'Kavana Shetty'; Query OK, 1

row affected (0.00 sec)

mysql> SELECT * FROM Employee;

+ + + + + +-

| EMPNO | ENAME | JOB | MANAGER_NO | SAL |

+ + + + + +-

| 2 | Ram Charan | Developer | 1 | 4000.00 |

| 3 | Honey Singh | Salesperson | 2 | 3000.00 |

+ + + + + +-

2 rows in set (0.00 sec)

 ROLLBACK 2 INSERTS AND 1 DELETE OPERATIONS

mysql> ROLLBACK;

Query OK, 0 rows affected (0.06 sec)

mysql> SELECT * FROM Employee;

+ + + + + +

| EMPNO | ENAME | JOB | MANAGER_NO | SAL | CO

+ + + + + +

| 1 | Kavana Shetty | Manager | NULL | 5000.00 |

+ + + + + +

1 row in set (0.00 sec)

We can now see how the rollback operation can be used above.

Adding Constraints

Add Primary Key Constraint

1 Add Primary Key Constraint

2 mysql> ALTER TABLE Employee

3 * ADD CONSTRAINT pk_employee PRIMARY KEY (EMPNO);

4 Query OK, 0 rows affected (1.65 sec) 5

6 verify primary key constraint

7 mysql> DESC Employee;

8 + + + + + +

9 | Field | Type | Null | Key | Default | Extr

10 + + + + + +

11 | EMPNO | int | N
O

| PRI | NULL |

12 | ENAME | varchar(255) | YES | | NULL |

13 | JOB | varchar(255) | YES | | NULL |

14 | MANAGER_N
O

| int | YES | | NULL |

15 | SAL | decimal(10,2) | YES | | NULL |

16 | COMMISSIO
N

| decimal(10,2) | YES | | NULL |

17 + + + + + +

18 6 rows in set (0.00 sec) 19

20 mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MANAGER_NO

21 * VALUES (1, 'Ranjan', 'Manager', NULL, 5000.00, 1000

22 ERROR 1062 (23000): Duplicate entry '1' for key 'Employee. 23

Since EMPNO field is the primary key it cannot have duplicate values,

hence we see that the insert operation fails when provided with a duplicate

value.

Add Not Null Constraints

mysql> ALTER TABLE Employee

* MODIFY ENAME VARCHAR(255) NOT NULL,

* MODIFY JOB VARCHAR(255) NOT NULL,

* MODIFY SAL DECIMAL(10, 2) NOT NULL;

Query OK, 0 rows affected (1.08 sec)

mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MANAGER_NO, S

* VALUES (4, 'Ranjan', 'Manager', NULL, 5000.00, 1000.00

Query OK, 1 row affected (0.16 sec)

mysql>

mysql> SELECT * FROM Employee;

+ + + + + +

| EMPNO | ENAME | JOB | MANAGER_NO | SAL | CO

+ + + + + +

| 1 | Kavana Shetty | Manager | NULL | 5000.00 |

| 4 | Ranjan | Manager | NULL | 5000.00 |

+ + + + + +

2 rows in set (0.00 sec)

mysql> INSERT INTO Employee (ENAME, JOB, MANAGER_NO, SAL, COM

* VALUES (NULL, 'Tester', NULL, 3500.00, NULL);

ERROR 1048 (23000): Column 'ENAME' cannot be null

We just illustrated as to how to add not null constraint to the Employee table.

We see that the first insert doesn’t violate null constraint, however the second

insert does violate null constraint as ENAME field cannot be null.

Question 2

Create a table called Employee that contain attributes EMPNO,ENAME,JOB,

MGR,SAL &

execute the following.

1. Add a column commission with domain to the Employeetable.

2. Insert any five records into the table.

3. Update the column details of job

4. Rename the column of Employ table using alter command.

5. Delete the employee whose Empno is 105.

Solution
Creating the Employee Table

mysql> CREATE DATABASE COMPANY02;

Query OK, 1 row affected (0.16 sec)

mysql> USE COMPANY02;

Database changed

mysql> CREATE TABLE Employee (

* EMPNO INT,

* ENAME VARCHAR(255),

* JOB VARCHAR(255),

* MGR INT,

* SAL DECIMAL(10, 2)

*);

Query OK, 0 rows affected (0.48 sec)

mysql> SHOW TABLES;

+ +

| Tables_in_COMPANY02 |

+ +

| Employee |

+ +

1 row in set (0.00 sec)

mysql> DESC Employee;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| EMPN
O

| int | YES | | NULL | |

| ENAM
E

| varchar(255) | YES | | NULL | |

| JOB | varchar(255) | YES | | NULL | |

| MGR | int | YES | | NULL | |

| SAL | decimal(10,2) | YES | | NULL | |

+ + + + + + +

5 rows in set (0.00 sec)

Adding a Column (Commission) to the Employee Table

1 mysql> ALTER TABLE Employee

2 * ADD COLUMN COMMISSION DECIMAL(10, 2);

3 Query OK, 0 rows affected (0.37 sec) 4

5 mysql> DESC Employee;

6 + + + + + +

7 | Field | Type | Null | Key | Default | Extr 8 + +

 + + + +

9 | EMPNO | int | YES | | NULL |

10 | ENAME | varchar(255) | YES | | NULL |

11 | JOB | varchar(255) | YES | | NULL |

12 | MGR | int | YES | | NULL |

13 | SAL | decimal(10,2) | YES | | NULL |

14 | COMMISSIO

N

| decimal(10,2) | YES | | NULL |

15 + + + + + +

16 6 rows in set (0.00 sec) 17

We have added a column COMMISSION using the ALTER command,

which is shown above.

Inserting 5 Records into the Employee Table

mysql> INSERT INTO Employee (EMPNO, ENAME, JOB, MGR, SAL, COM

* VALUES

* (101, 'Radha Bai', 'Manager', NULL, 5000.00, 1000.

* (102, 'Krishna Kumar', 'Developer', 101, 4000.00,

* (103, 'Abdul Sattar', 'Salesperson', 102, 3000.00,

* (104, 'Bob Johnson', 'Accountant', 101, 4500.00, N

* (105, 'Amartya Sen', 'HR Manager', 101, 4800.00, 8 Query OK, 5 rows

affected (0.12 sec)

Records: 5 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM Employee;

+ + + + + +

| EMPNO | ENAME | JOB | MGR | SAL | COMM

+ + + + + +

| 101 | Radha Bai | Manager | NULL | 5000.00 | 1

| 102 | Krishna Kumar | Developer | 101 | 4000.00 |

| 103 | Abdul Sattar | Salesperson | 102 | 3000.00 |

| 104 | Bob Johnson | Accountant | 101 | 4500.00 |

| 105 | Amartya Sen | HR Manager | 101 | 4800.00 |

+ + + + + +

5 rows in set (0.00 sec)

Updating Column Details (JOB) in the Employee Table

mysql> UPDATE Employee

* SET JOB = 'Senior Developer'

* WHERE EMPNO = 102;

Query OK, 1 row affected (0.09 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM Employee;

+ + + + + +

| EMPNO | ENAME | JOB | MGR | SAL |

+ + + + + +

| 101 | Radha Bai | Manager | NULL | 5000.00 |

| 102 | Krishna Kumar | Senior Developer | 101 | 4000.00 |

| 103 | Abdul Sattar | Salesperson | 102 | 3000.00 |

| 104 | Bob Johnson | Accountant | 101 | 4500.00 |

| 105 | Amartya Sen | HR Manager | 101 | 4800.00 |

+ + + + + +

5 rows in set (0.00 sec)

Renaming a Column in the Employee Table

To rename the `MGR` column to `MANAGER_ID`:

mysql> ALTER TABLE Employee

* CHANGE COLUMN MGR MANAGER_ID INT;

Query OK, 0 rows affected (0.30 sec) Records: 0

Duplicates: 0 Warnings: 0

mysql> DESC Employee;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| EMPNO | int | YES | | NULL | |

| ENAME | varchar(255) | YES | | NULL | |

| JOB | varchar(255) | YES | | NULL | |

| MANAGER_I
D

| int | YES | | NULL | |

| SAL | decimal(10,2) | YES | | NULL | |

| COMMISSIO
N

| decimal(10,2) | YES | | NULL | |

+ + + + + + +

6 rows in set (0.00 sec)

Deleting a Specific Employee (EMPNO = 105) from the

Employee Table

1 mysql> DELETE FROM Employee

2 * WHERE EMPNO = 105;

3 Query OK, 1 row affected (0.14 sec)

4

5 mysql> SELECT * FROM Employee;

6 + + + + +-

7 | EMPNO | ENAME | JOB | MANAGER_ID |

8 + + + + +-

9 | 101 | Radha Bai | Manager | NULL |

10 | 102 | Krishna Kumar | Senior Developer | 101 |

11 | 103 | Abdul Sattar | Salesperson | 102 |

12 | 104 | Bob Johnson | Accountant | 101 |

13 + + + + +-

14 4 rows in set (0.00 sec) 15

Question 3

Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group

by,Orderby.

Employee(E_id, E_name, Age, Salary)

1. Create Employee table containing all Records E_id, E_name, Age,

Salary.

2. Count number of employee names from Employee table

3. Find the Maximum age from Employee table.

4. Find the Minimum age from Employee table.

5. Find salaries of employee in Ascending Order.

6. Find grouped salaries of employees.

Solution
1. Creating the Employee Table

mysql> CREATE DATABASE COMPANY03;

Query OK, 1 row affected (0.09 sec)

mysql> USE COMPANY03;

Database changed

mysql> CREATE TABLE Employee (

* E_id INT PRIMARY KEY,

* E_name VARCHAR(255),

* Age INT,

* Salary DECIMAL(10, 2)

*);

Query OK, 0 rows affected (1.00 sec)

mysql> DESC Employee;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| E_id | int | NO | PRI | NULL | |

| E_name | varchar(255) | YES | | NULL | |

| Age | int | YES | | NULL | |

| Salary | decimal(10,2) | YES | | NULL | |

+ + + + + + +

4 rows in set (0.00 sec)

2. Populating the Employee Table with 12 Records

mysql> INSERT INTO Employee (E_id, E_name, Age, Salary)

* VALUES

* (1, 'Samarth', 30, 50000.00),

* (2, 'Ramesh Kumar', 25, 45000.00),

* (3, 'Seema Banu', 35, 60000.00),

* (4, 'Dennis Anil', 28, 52000.00),

* (5, 'Rehman Khan', 32, 58000.00),

* (6, 'Pavan Gowda', 40, 70000.00),

* (7, 'Shruthi Bhat', 27, 48000.00),

* (8, 'Sandesh Yadav', 29, 51000.00),

* (9, 'Vikram Acharya', 33, 62000.00),

* (10, 'Praveen Bellad', 26, 46000.00),

* (11, 'Sophia Mary', 31, 55000.00),

* (12, 'Darshan Desai', 34, 63000.00);

Query OK, 12 rows affected (0.14 sec) Records: 12

Duplicates: 0 Warnings: 0

mysql> SELECT * FROM Employee;

+ + + + +

| E_id | E_name | Age | Salary |

+ + + + +

| 1 | Samarth | 30 | 50000.00 |

| 2 | Ramesh Kumar | 25 | 45000.00 |

| 3 | Seema Banu | 35 | 60000.00 |

| 4 | Dennis Anil | 28 | 52000.00 |

| 5 | Rehman Khan | 32 | 58000.00 |

| 6 | Pavan Gowda | 40 | 70000.00 |

| 7 | Shruthi Bhat | 27 | 48000.00 |

| 8 | Sandesh Yadav | 29 | 51000.00 |

| 9 | Vikram Acharya | 33 | 62000.00 |

| 10 | Praveen Bellad | 26 | 46000.00 |

| 11 | Sophia Mary | 31 | 55000.00 |

| 12 | Darshan Desai | 34 | 63000.00 |

+ + + + +

12 rows in set (0.00 sec)

3. Count Number of Employee Names

mysql> SELECT COUNT(E_name) AS TotalEmployees

* FROM Employee;

+ +

| TotalEmployees |

+ +

| 12 |

+ +

1 row in set (0.00 sec)

4. Find the Maximum Age

mysql> SELECT MAX(Age) AS MaxAge

* FROM Employee;

+ +

| MaxAge |

+ +

| 40 |

+ +

1 row in set (0.01 sec)

5. Find the Minimum Age

mysql> SELECT MIN(Age) AS MinAge

* FROM Employee;

+ +

| MinAge |

+ +

| 25 |

+ +

1 row in set (0.00 sec)

6. Find Salaries of Employees in Ascending Order

mysql> SELECT E_name, Salary

* FROM Employee

* ORDER BY Salary ASC;

+ + +

| E_name | Salary |

+ + +

| Ramesh Kumar | 45000.00 |

| Praveen Bellad | 46000.00 |

| Shruthi Bhat | 48000.00 |

| Samarth | 50000.00 |

| Dennis Anil | 52000.00 |

| Sandesh Yadav | 52000.00 |

| Sophia Mary | 55000.00 |

| Rehman Khan | 58000.00 |

| Seema Banu | 62000.00 |

| Vikram Acharya | 62000.00 |

| Darshan Desai | 63000.00 |

| Pavan Gowda | 70000.00 |

+ + +

12 rows in set (0.00 sec)

7. Find Grouped Salaries of Employees

mysql> SELECT Salary, COUNT(*) AS EmployeeCount

* FROM Employee

* GROUP BY Salary;

+ + +

| Salary | EmployeeCount |

+ + +

| 50000.00 | 1 |

| 45000.00 | 1 |

| 62000.00 | 2 |

| 52000.00 | 2 |

| 58000.00 | 1 |

| 70000.00 | 1 |

| 48000.00 | 1 |

| 46000.00 | 1 |

| 55000.00 | 1 |

| 63000.00 | 1 |

+ + +

10 rows in set (0.00 sec)

In these queries:

`COUNT(E_name)` counts the number of non-NULL values in the

`E_name` column.

`MAX(Age)` finds the maximum age among the employees.

`MIN(Age)` finds the minimum age among the employees.

`ORDER BY Salary ASC` sorts the employees based on their salaries in

ascending order.

`GROUP BY Salary` groups employees by their salaries and counts the number

of employees for each salary.

Question 4

Create a row level trigger for the customers table that would fire for INSERT

or UPDATE or DELETE operations performed on the CUSTOMERS

table. This trigger will display the salary difference between the old & new

Salary.

CUSTOMERS(ID,NAME,AGE,ADDRESS,SALARY)

Solution
1. Create the `CUSTOMERS` Table

First, create the `CUSTOMERS` table with the specified columns:

mysql> CREATE DATABASE COMPANY04;

Query OK, 1 row affected (0.14 sec)

mysql> USE COMPANY04;

Database changed

mysql> CREATE TABLE CUSTOMERS (

* ID INT PRIMARY KEY AUTO_INCREMENT,

* NAME VARCHAR(255),

* AGE INT,

* ADDRESS VARCHAR(255),

* SALARY DECIMAL(10, 2)

*);

Query OK, 0 rows affected (0.49 sec)

To achieve the desired functionality of capturing changes on `INSERT`, `UPDATE`, or

`DELETE` operations and displaying the salary difference in MySQL, you’ll need to

create separate row-level triggers for each operation (`INSERT`, `UPDATE`,

`DELETE`). These triggers will capture the `OLD` and `NEW` values of the `SALARY`

column and display the salary difference when an INSERT, UPDATE, or DELETE

operation occurs.Here’s how you can do it:

2. Create Trigger for INSERT Operation

#INSERT TRIGGER

DELIMITER

CREATE TRIGGER after_insert_salary_difference

AFTER INSERT ON CUSTOMERS

FOR EACH

ROW BEGIN

SET @my_sal_diff = CONCAT('salary inserted is ', NEW.SALARY END;

DELIMITER ;

3. Create Trigger for UPDATE Operation

UPDATE TRIGGER

DELIMITER

CREATE TRIGGER after_update_salary_difference AFTER

UPDATE ON CUSTOMERS

FOR EACH

ROW BEGIN

DECLARE old_salary DECIMAL(10, 2);

DECLARE new_salary DECIMAL(10, 2);

SET old_salary = OLD.SALARY; SET

new_salary = NEW.SALARY;

SET @my_sal_diff = CONCAT('salary difference after update I’)

 END;

DELIMITER ;

4. Create Trigger for DELETE Operation

DELETE TRIGGER

DELIMITER

CREATE TRIGGER after_delete_salary_difference AFTER

DELETE ON CUSTOMERS

FOR EACH

ROW BEGIN

SET @my_sal_diff = CONCAT('salary deleted is ', OLD.SALARY) END;

DELIMITER ;

5. Testing the Trigger:

Once the triggers are created, you can perform `INSERT`, `UPDATE`, or

`DELETE` operations on the `CUSTOMERS` table to observe the salary difference

messages generated by the triggers.

For example:

mysql> test INSERT TRIGGER

mysql> INSERT INTO CUSTOMERS (NAME, AGE, ADDRESS, SALARY)

* VALUES ('Shankara', 35, '123 Main St', 50000.00);

Query OK, 1 row affected (0.14 sec)

mysql>

mysql> SELECT @my_sal_diff AS SAL_DIFF;

+ +

| SAL_DIFF |

+ +

| salary inserted is 50000.00 |

+ +

1 row in set (0.00 sec)

mysql> test UPDATE TRIGGER

 mysql> UPDATE CUSTOMERS

* SET SALARY = 55000.00

* WHERE ID = 1;

Query OK, 1 row affected (0.13 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @my_sal_diff AS SAL_DIFF;

+ +

| SAL_DIFF |

+ +

| salary difference after update is 5000.00 |

+ +

1 row in set (0.00 sec)

mysql> test DELETE TRIGGER

 mysql> DELETE FROM CUSTOMERS

* WHERE ID = 1;

Query OK, 1 row affected (0.13 sec)

mysql>

mysql> SELECT @my_sal_diff AS SAL_DIFF;

+ +

| SAL_DIFF |

+ +

| salary deleted is 55000.00 |

+ +

1 row in set (0.00 sec)

Each operation (`INSERT`, `UPDATE`, `DELETE`) will trigger the respective

trigger(`after_insert_salary_difference`,`after_update_salary_difference`,`after_del

ete_salary_difference`), which will display the salary change or difference

associated with that operation. By using separate triggers for each operation

and utilizing the `OLD` and`NEW` keywords appropriately within the trigger

bodies, you can effectively capture and handle changes to the `SALARY`

column in the `CUSTOMERS` table in MySQL. You can adjust the trigger

logic and message formatting as needed based on your specific requirements.

Question 5

Create cursor for Employee table & extract the values from the table.

Declare the variables,Open the cursor & extract the values from the cursor. Close

the cursor.

CUSTOMERS(ID,NAME,AGE,ADDRESS,SALARY)

Solution

1. Creating the Employee Table and insert few records

CREATE DATABASE

COMPANY05; USE COMPANY05;

CREATE TABLE Employee (

E_id INT,

E_name VARCHAR(255),

Age INT,

Salary DECIMAL(10, 2)

);

INSERT INTO Employee (E_id, E_name, Age, Salary) VALUES

(1, 'Samarth', 30, 50000.00),

(2, 'Ramesh Kumar', 25, 45000.00),

(3, 'Seema Banu', 35, 62000.00),

(4, 'Dennis Anil', 28, 52000.00),

(5, 'Rehman Khan', 32, 58000.00);

2. Create a Stored Procedure with Cursor

To create a cursor for the `Employee` table, extract values using the cursor, and then

close the cursor in MySQL, you’ll need to use stored procedures that support

cursor operations.

DELIMITER

CREATE PROCEDURE fetch_employee_data() BEGIN

Declare variables to store cursor values

 DECLARE emp_id INT;

A cursor (`emp_cursor`) is declared to select `E_id`, `E_name`, `Age`,

DECLARE emp_name VARCHAR(255);

DECLARE emp_age INT;

DECLARE emp_salary DECIMAL(10, 2);

Declare a cursor for the Employee table

 DECLARE emp_cursor CURSOR FOR

SELECT E_id, E_name, Age, Salary FROM

Employee;

Declare a continue handler for the cursor

 DECLARE CONTINUE HANDLER FOR NOT FOUND

SET @finished = 1;

Open the cursor

 OPEN emp_cursor;

Initialize a variable to control cursor loop

SET @finished = 0;

Loop through the cursor results

 cursor_loop: LOOP

Fetch the next row from the cursor into variables

 FETCH emp_cursor INTO emp_id, emp_name, emp_age, emp_

 Check if no more rows to fetch

IF @finished = 1 THEN

LEAVE cursor_loop;

END IF;

SELECT CONCAT('Employee ID: ', emp_id, ', Name: ', em

END LOOP;

Close the cursor

CLOSE emp_cursor;

END

DELIMITER ;

In this stored procedure (`fetch_employee_data`):

We declare variables (`emp_id`, `emp_name`, `emp_age`, `emp_salary`) to

store values retrieved from the cursor.

and `Salary` from the `Employee` table.

We declare a continue handler (`CONTINUE HANDLER`) for `NOT FOUND`

condition to handle the end of cursor data.

The cursor is opened (`OPEN emp_cursor`), and a loop (`cursor_loop`) is used

to fetch each row from the cursor.

We fetch values into the variables and process them within the loop (for

demonstration, we print the values using a `SELECT` statement).

The loop continues until all rows are fetched (`@finished = 1`). Finally,

the cursor is closed (`CLOSE emp_cursor`).

3. Execute the Stored Procedure

Once the stored procedure `fetch_employee_data` is created, you can execute it to

fetch and process data from the `Employee` table:

mysql> CALL fetch_employee_data();

+ +

| Employee_Info |

+ +

| Employee ID: 1, Name: Samarth, Age: 30, Salary: 50000.00 |

+ +

1 row in set (0.07 sec)

+

| Employee_Info

+

| Employee ID: 2, Name: Ramesh Kumar, Age: 25, Salary: 45000.

+

1 row in set (0.07 sec)

+

| Employee_Info

+

| Employee ID: 3, Name: Seema Banu, Age: 35, Salary: 62000.00

+

1 row in set (0.07 sec)

+

| Employee_Info

+

| Employee ID: 4, Name: Dennis Anil, Age: 28, Salary: 52000.0

+

1 row in set (0.07 sec)

+

| Employee_Info

+

| Employee ID: 5, Name: Rehman Khan, Age: 32, Salary: 58000.0

+

1 row in set (0.07 sec)

Query OK, 0 rows affected (0.07 sec)

The stored procedure `fetch_employee_data` declares variables (`emp_id`,

`emp_name`, `emp_age`, `emp_salary`) to store values retrieved from the

cursor.

A cursor (`emp_cursor`) is declared for the `Employee` table to select

`E_id`, `E_name`, `Age`, and `Salary`.

The cursor is opened (`OPEN emp_cursor`), and the `FETCH` statement

retrieves the first row from the cursor into the declared variables.

A `WHILE` loop processes each row fetched by the cursor (`SQLSTATE()

= '00000'` checks for successful fetching).

Within the loop, you can perform operations or output the values of each

row.

The `CLOSE` statement closes the cursor after processing all rows.

This example demonstrates how to create and use a cursor in MySQL to extract

values from the `Employee` table row by row. Adjust the cursor query and

processing logic based on your table structure and desired operations.

Question 6
Write a PL/SQL block of code using parameterized Cursor, that will merge the

data available in the newly created table N_RollCall with the data available in the

table O_RollCall. If the data in the first table already exist in the second table then

that data should be skipped.

Solution

To accomplish this task in MySQL, we can use a stored procedure with a

parameterized cursor to merge data from one table (`N_RollCall`) into another

table (`O_RollCall`) while skipping existing data. We’ll iterate

through the records of `N_RollCall` and insert them into `O_RollCall`

only if they do not already exist.

1. Create the Tables

First, let’s create the `N_RollCall` and `O_RollCall` tables with similar structure:

CREATE DATABASEROLLCALL;

USE ROLLCALL;

Create N_RollCall table

 CREATE TABLE N_RollCall (

student_id INT PRIMARY KEY,

student_name VARCHAR(255),

birth_date DATE

);

Create O_RollCall table with common data

CREATE TABLE O_RollCall (

student_id INT PRIMARY KEY,

student_name VARCHAR(255),

birth_date DATE

);

2. Add Sample Records to both tables

Let’s insert some sample data into the `O_RollCall` table:

mysql> Insert common data into O_RollCall

mysql> INSERT INTO O_RollCall (student_id, student_name, birt

* VALUES

* (1, 'Shivanna', '1995-08-15'),

* (3, 'Cheluva', '1990-12-10');

Query OK, 2 rows affected (0.17 sec)

Records: 2 Duplicates: 0 Warnings: 0

Let’s insert some sample data into the `N_RollCall` table, including records that

are common with `O_RollCall`:

mysql> = Insert sample records into N_RollCall

mysql> INSERT INTO N_RollCall (student_id, student_name, birt

* VALUES

* (1, 'Shivanna', '1995-08-15'), = Common record w

* (2, 'Bhadramma', '1998-03-22'),

* (3, 'Cheluva', '1990-12-10'), = Common record wit

* (4, 'Devendra', '2000-05-18'),

* (5, 'Eshwar', '1997-09-03');

Query OK, 5 rows affected (0.21 sec) Records: 5

Duplicates: 0 Warnings: 0

3. Define the Stored Procedure

Next, let’s define the `merge_rollcall_data` stored procedure to merge records

from `N_RollCall` into `O_RollCall`, skipping existing records:

DELIMITER

CREATE PROCEDURE merge_rollcall_data() BEGIN

DECLARE done INT DEFAULT FALSE;

DECLARE n_id INT;

DECLARE n_name VARCHAR(255);

DECLARE n_birth_date DATE;

Declare cursor for N_RollCall table

DECLARE n_cursor CURSOR FOR

SELECT student_id, student_name, birth_date

FROM N_RollCall;

Declare handler for cursor

DECLARE CONTINUE HANDLER FOR NOT FOUND

SET done = TRUE;

Open the cursor

OPEN n_cursor;

Start looping through cursor results

cursor_loop: LOOP

Fetch data from cursor into variables

FETCH n_cursor INTO n_id, n_name, n_birth_date;

Check if no more rows to fetch IF done THEN

LEAVE cursor_loop; END

IF;

Check if the data already exists in O_RollCall

IF NOT EXISTS (

SELECT 1

FROM O_RollCall

WHERE student_id = n_id

) THEN

Insert the record into O_RollCall

INSERT INTO O_RollCall (student_id, student_name, VALUES (n_id,

n_name, n_birth_date);

END IF;

END LOOP;

Close the cursor CLOSE

n_cursor;

END

DELIMITER ;

The stored procedure `merge_rollcall_data` uses a cursor

(`n_cursor`) to iterate through the records of the `N_RollCall` table.

Inside the cursor loop (`cursor_loop`), each record (`n_id`, `n_name`,

`n_date`) from `N_RollCall` is fetched and checked against the

`O_RollCall` table.

If the record does not already exist in `O_RollCall` (checked using

`NOT EXISTS`), it is inserted into `O_RollCall`.

The cursor loop continues until all records from `N_RollCall` have been

processed.

The cursor is then closed (`CLOSE n_cursor`).

4. Execute the Stored Procedure

Finally, execute the `merge_rollcall_data` stored procedure to merge records from

`N_RollCall` into `O_RollCall` while skipping existing records:

mysql> CALL merge_rollcall_data(); Query OK, 0 rows

affected (0.87 sec)

5. Verify Records in `O_RollCall`

After executing the procedure, verify the records in the `O_RollCall` table to

confirm that new records from `N_RollCall` have been inserted, while existing

common records have been skipped:

mysql> = Select all records from O_RollCall

mysql> SELECT * FROM O_RollCall;

+ + + +

| student_id | student_name | birth_date |

+ + + +

| 1 | Shivanna | 1995-08-15 |

| 2 | Bhadramma | 1998-03-22 |

| 3 | Cheluva | 1990-12-10 |

| 4 | Devendra | 2000-05-18 |

| 5 | Eshwar | 1997-09-03 |

+ + + +

5 rows in set (0.00 sec)

Question 7

Install an Open Source NoSQL Data base MongoDB & perform basic CRUD(Create,

Read, Update & Delete) operations. Execute MongoDB basic Queries using CRUD

operations.

Solution

1. Installing Open Source NoSQL Data base MongoDB

2. Perform basic CRUD(Create, Read, Update & Delete)

operations.

1. Start MongoDB.

Launch the MongoDB daemon using the following command:

sudo systemctl start mongod

2. Start the MongoDB Shell

Launch the MongoDB shell to perform basic CRUD operations.

mongosh

3. Switch to a Database (Optional):

If you want to use a specific database, switch to that database using the

`use` command. If the database doesn’t exist, MongoDB will create it implicitly

when you insert data into it:

test> use bookDB switched to

db bookDB bookDB>

4. Create the `ProgrammingBooks` Collection:

To create the `ProgrammingBooks` collection, use the `createCollection()` method. This

step is optional because MongoDB will automatically create the collection when you

insert data into it, but you can explicitly create it if needed:

bookDB> db.createCollection("ProgrammingBooks")

This command will create an empty `ProgrammingBooks` collection in the

current database (`bookDB`).

5. INSERT operations

a. Insert 5 Documents into the `ProgrammingBooks` Collection :

Now, insert 5 documents representing programming books into the

`ProgrammingBooks` collection using the `insertMany()` method:

bookDB> db.ProgrammingBooks.insertMany([

{

title: "Clean Code: A Handbook of Agile Software Craftsma author: "Robert C.

Martin",

category: "Software Development", year: 2008

},

{

title: "JavaScript: The Good Parts", author: "Douglas

Crockford", category: "JavaScript",

year: 2008

},

{

title: "Design Patterns: Elements of Reusable Object-Orie author: "Erich Gamma,

Richard Helm, Ralph Johnson, John V category: "Software Design",

year: 1994

},

{

title: "Introduction to Algorithms",

author: "Thomas H. Cormen, Charles E. Leiserson, Ronald L category: "Algorithms",

year: 1990

},

{

title: "Python Crash Course: A Hands-On, Project-Based In author: "Eric Matthes",

category: "Python", year:

2015

}])

b. Insert a Single Document into `ProgrammingBooks`:

Use the `insertOne()` method to insert a new document into the

`ProgrammingBooks` collection:

bookDB> db.ProgrammingBooks.insertOne({

title: "The Pragmatic Programmer: Your Journey to Mastery", author: "David Thomas,

Andrew Hunt",

category: "Software Development", year: 1999

})

6. Read (Query) Operations

a. Find All Documents

To retrieve all documents from the `ProgrammingBooks` collection:

bookDB> db.ProgrammingBooks.find().pretty() [

{

_id: ObjectId('663eaaebae582498972202df'),

title: 'Clean Code: A Handbook of Agile Software Craftsma author: 'Robert C.

Martin',

category: 'Software Development', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e0'), title: 'JavaScript:

The Good Parts', author: 'Douglas Crockford',

category: 'JavaScript', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e1'),

title: 'Design Patterns: Elements of Reusable Object-Orie author: 'Erich Gamma,

Richard Helm, Ralph Johnson, John V category: 'Software Design',

year: 1994

},

{

_id: ObjectId('663eaaebae582498972202e2'), title:

'Introduction to Algorithms',

author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L category: 'Algorithms',

year: 1990

},

{

_id: ObjectId('663eaaebae582498972202e3'),

title: 'Python Crash Course: A Hands-On, Project-Based In author: 'Eric Matthes',

category: 'Python', year:

2015

},

{

_id: ObjectId('663eab05ae582498972202e4'),

title: 'The Pragmatic Programmer: Your Journey to Mastery author: 'David Thomas,

Andrew Hunt',

category: 'Software Development', year: 1999

}

]

b. Find Documents Matching a Condition

To find books published after the year 2000:

bookDB> db.ProgrammingBooks.find({ year: { $gt: 2000 } }).pre [

{

_id: ObjectId('663eaaebae582498972202df'),

title: 'Clean Code: A Handbook of Agile Software Craftsma author: 'Robert C.

Martin',

category: 'Software Development', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e0'), title: 'JavaScript:

The Good Parts', author: 'Douglas Crockford',

category: 'JavaScript', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e3'),

title: 'Python Crash Course: A Hands-On, Project-Based In author: 'Eric Matthes',

category: 'Python',year: 2015

}

]

7. Update Operations

a. Update a Single Document

To update a specific book (e.g., change the author of a book):

bookDB>db.ProgrammingBooks.updateOne(

{ title: "Clean Code: A Handbook of Agile Software Craftsma

{ $set: { author: "Robert C. Martin (Uncle Bob)" } }

)

 verify by displaying books published in year 2008

bookDB> db.ProgrammingBooks.find({ year: { $eq: 2008 } }).pre [

{

_id: ObjectId('663eaaebae582498972202df'),

title: 'Clean Code: A Handbook of Agile Software Craftsma author: 'Robert C. Martin

(Uncle Bob)',

category: 'Software Development', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e0'), title: 'JavaScript:

The Good Parts', author: 'Douglas Crockford',

category: 'JavaScript', year: 2008

}

]

b. Update Multiple Documents

To update multiple books (e.g., update the category of books published before

2010):

bookDB> db.ProgrammingBooks.updateMany(

{ year: { $lt: 2010 } },

{ $set: { category: "Classic Programming Books" } }

)

 verify the update operation by displaying books published b bookDB>

db.ProgrammingBooks.find({ year: { $lt: 2010 } }).pre [

{

_id: ObjectId('663eaaebae582498972202df'),

title: 'Clean Code: A Handbook of Agile Software Craftsma author: 'Robert C. Martin

(Uncle Bob)',

category: 'Classic Programming Books', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e0'), title: 'JavaScript:

The Good Parts', author: 'Douglas Crockford',

category: 'Classic Programming Books', year: 2008

},

{

_id: ObjectId('663eaaebae582498972202e1'),

title: 'Design Patterns: Elements of Reusable Object-Orie author: 'Erich Gamma,

Richard Helm, Ralph Johnson, John V category: 'Classic Programming Books',

year: 1994

},

{

_id: ObjectId('663eaaebae582498972202e2'), title:

'Introduction to Algorithms',

author: 'Thomas H. Cormen, Charles E. Leiserson, Ronald L category: 'Classic

Programming Books',

year: 1990

},

{

_id: ObjectId('663eab05ae582498972202e4'),

title: 'The Pragmatic Programmer: Your Journey to Mastery author: 'David Thomas,

Andrew Hunt',

category: 'Classic Programming Books', year: 1999

}

]

8. Delete Operations

To delete a specific book from the collection (e.g., delete a book by title):

bookDB> db.ProgrammingBooks.deleteOne({ title: "JavaScript: T

{ acknowledged: true, deletedCount: 1 }

We can check whether the specified document is deleted by displaying the

contents of the collection.

b. Delete Multiple Documents

To delete multiple books based on a condition (e.g., delete all books published

before 1995):

bookDB> db.ProgrammingBooks.deleteMany({ year: { $lt: 1995 }

{ acknowledged: true, deletedCount: 2 }

We can check whether the specified documents were deleted by displaying the

contents of the collection.

c. Delete All Documents in the Collection:

To delete all documents in a collection (e.g., `ProgrammingBooks`), use the

`deleteMany()` method with an empty filter `{}`:

 delete all documents in a collection bookDB>

db.ProgrammingBooks.deleteMany({})

{ acknowledged: true, deletedCount: 3 }

 verify by displaying the collection bookDB>

db.ProgrammingBooks.find().pretty()

9. Delete the Collection Using drop():

To delete a collection named `ProgrammingBooks`, use the `drop()`

method with the name of the collection:

bookDB> show collections

ProgrammingBooks

bookDB> db.ProgrammingBooks.drop() true

bookDB> show collections

bookDB>

The command `db.ProgrammingBooks.drop()` will permanently delete the

`ProgrammingBooks` collection from the current database (`bookDB`). After deleting

the collection, you can verify that it no longer exists by listing all collections in the

database using the command `show collections`.

